IEEE Trans Cybern. 2014 May;44(5):655-68. doi: 10.1109/TCYB.2013.2265084. Epub 2013 Jul 3.
Multistep-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multistep-ahead time series prediction, exhibiting advantages compared with the two currently dominating strategies, the iterated and the direct strategies. Built on the established MISMO strategy, this paper proposes a particle swarm optimization (PSO)-based MISMO modeling strategy, which is capable of determining the number of sub-models in a self-adaptive mode, with varying prediction horizons. Rather than deriving crisp divides with equal-size s prediction horizons from the established MISMO, the proposed PSO-MISMO strategy, implemented with neural networks, employs a heuristic to create flexible divides with varying sizes of prediction horizons and to generate corresponding sub-models, providing considerable flexibility in model construction, which has been validated with simulated and real datasets.
多步时间序列预测是时间序列建模和预测领域中最具挑战性的研究课题之一,一直受到研究人员的关注。最近,多输入多输出(MISMO)建模策略被提出作为多步时间序列预测的一种有前途的替代方法,与目前占主导地位的迭代和直接策略相比具有优势。本文基于已建立的 MISMO 策略,提出了一种基于粒子群优化(PSO)的 MISMO 建模策略,该策略能够以自适应的方式确定子模型的数量,同时具有不同的预测范围。与从已建立的 MISMO 中导出具有相同大小预测范围的清晰划分不同,所提出的 PSO-MISMO 策略,采用神经网络实现,使用启发式方法创建具有不同大小预测范围的灵活划分,并生成相应的子模型,在模型构建方面具有很大的灵活性,已经通过模拟和真实数据集进行了验证。