DeVries Levi, Lagor Francis D, Lei Hong, Tan Xiaobo, Paley Derek A
Department of Aerospace Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
Bioinspir Biomim. 2015 Mar 25;10(2):025002. doi: 10.1088/1748-3190/10/2/025002.
Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.
受生物启发的传感模式增强了自动驾驶车辆对其环境进行特征描述和做出响应的能力。本文关注软骨鱼和硬骨鱼的侧线,它对流体运动敏感,使鱼能够感知迎面而来的水流以及墙壁或障碍物的存在。侧线由两种传感模式组成:管道神经丘测量近似的压力梯度,而表面神经丘测量局部流速。通过采用人工侧线,在黑暗、杂乱或浑浊的环境中,水下传感和导航策略的性能得到了改善,在这些环境中传统传感模式可能会受到阻碍。本文提出了估计和控制策略,使翼型无人水下航行器能够吸收来自受生物启发的多模式人工侧线的测量数据,并估计流动特性以进行反馈控制。我们利用势流理论对均匀流中以及存在上游障碍物时流过箔片的流体流动进行建模。我们推导出理论上合理的非线性估计策略,以估计自由流流速、攻角和上游障碍物的相对位置。反馈控制策略利用估计的流动特性来执行受生物启发的行为,包括趋流性(鱼向上游定向的倾向)和驻留(鱼在上游障碍物后方定位的倾向)。一个配备了由离子聚合物金属复合材料和嵌入式压力传感器组成的多模式人工侧线的机器人原型,通过实验证明了分布式流动传感和闭环控制策略。