Suppr超能文献

基于模型的观测器和反馈控制设计用于卡门涡街中的刚性儒可夫斯基翼型。

Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

机构信息

Department of Aerospace Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742, United States of America.

出版信息

Bioinspir Biomim. 2018 Mar 14;13(3):035001. doi: 10.1088/1748-3190/aaa97f.

Abstract

Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

摘要

在流动中,障碍物和游动的鱼类会产生一种左右交替的涡旋模式的尾流,分别称为卡门涡街和反向卡门涡街。一种类似于在涡街中穿梭的节能鱼类行为称为卡门步态。本文描述了在 Joukowski 翼型上使用仿生压力传感器阵列,通过势流理论、递归贝叶斯滤波和轨迹跟踪反馈控制,估计和控制卡门涡街中的流固相对位置。Joukowski 翼型固定在流水通道下游位置,并通过控制攻角在横流方向上自由移动在空气轴承上,以产生升力。受鱼类侧线神经节的启发,该传感和控制方案使用现成的压力传感器在实验测试平台中进行了验证,该测试平台包括一个拍打装置来产生涡旋。我们推导了一个描述 Joukowski 翼型在卡门涡街中流动的势流模型,并通过经验可观测性确定了通过卡门涡街的最佳路径。最佳可观测轨迹是穿过街道中每个涡旋的轨迹。卡门涡街的估计涡度和位置用于闭环控制,以跟踪最佳可观测路径或鱼类表现出的节能步态。在水槽中的闭环控制实验结果表明,人工侧线与势流模型和贝叶斯估计器相结合,允许机器人在卡门涡街中执行类似鱼类的穿梭行为。这项工作是自主机器人鱼感测另一条鱼的尾流并执行追逐和编队行为的前奏。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验