Suppr超能文献

鱼类侧线的涡旋感应模型。

A model of the lateral line of fish for vortex sensing.

机构信息

Department of Mechanical and Aerospace Engineering, University of Florida at Gainesville, FL 32611-6250, USA.

出版信息

Bioinspir Biomim. 2012 Sep;7(3):036016. doi: 10.1088/1748-3182/7/3/036016. Epub 2012 May 15.

Abstract

In this paper, the lateral line trunk canal (LLTC) of a fish is modeled to investigate how it is affected by an external flow field. Potential flow theory is adopted to model the flow field around a fish's body in the presence of a Karman vortex street. Karman and reverse Karman streets represent the flow patterns behind a bluff body and a traveling fish, respectively. An analytical solution is obtained for a flat body, while a fish-like body is modeled using a Joukowski transformation and the corresponding equations are solved numerically. The pressure distribution on the body surface is then computed employing Bernoulli's equation. For a known external flow, the flow inside the LLTC is driven by the pressure gradient between a pair of consecutive pores, which can be solved analytically. Governing dimensionless parameters are obtained from this analytical solution, and the effects of these numbers on the amplitude or features of the velocity distribution inside the canal are studied. The results show that the main characteristics of a vortex street including the magnitude of vortices, their translational speed, their spacing, their distance from the fish's body and the angle of the vortex street axis can all be recovered by measuring the velocity distribution along the canal and its changes with time. To this end, the proposed LLTC model could explain how a fish identifies the characteristics of a Karman vortex street shed by a nearby object or a traveling fish. It is also demonstrated that while this model captures the ac (alternating current) component of the external velocity signal, the dc (direct current) component of the signal is filtered out. Based on the results of our model, the role of the LLTC in a fish's schooling and its evolutionary impact on fish sensing are discussed.

摘要

本文对鱼类的侧线干管(LLTC)进行建模,以研究其如何受到外部流场的影响。采用势流理论来模拟鱼体周围存在卡门涡街时的流场。卡门涡街和反向卡门涡街分别代表了钝体和游动鱼类尾部的流型。对于平面体,得到了一个解析解,而对于类鱼体,则使用儒可夫斯基变换进行建模,并对相应的方程进行数值求解。然后,利用伯努利方程计算物体表面的压力分布。对于已知的外部流动,LLTC 内部的流动是由一对连续孔之间的压力梯度驱动的,这可以通过解析方法求解。从这个解析解中获得了无量纲参数,研究了这些数对管道内部速度分布幅度或特征的影响。结果表明,通过测量沿管道的速度分布及其随时间的变化,可以恢复涡街的主要特征,包括涡量的大小、它们的平移速度、它们的间距、它们与鱼体的距离以及涡街轴的角度。为此,所提出的 LLTC 模型可以解释鱼类如何识别附近物体或游动鱼类产生的卡门涡街的特征。还证明了该模型虽然捕获了外部速度信号的交流(AC)分量,但信号的直流(DC)分量被过滤掉了。基于我们模型的结果,讨论了 LLTC 在鱼类群体游动中的作用及其对鱼类感知的进化影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验