Suppr超能文献

从新型模块化聚己内酯构建体中双重递送促红细胞生成素和骨形态发生蛋白2以增加预制骨瓣中的骨形成

Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps.

作者信息

Patel Janki Jayesh, Modes Jane E, Flanagan Colleen L, Krebsbach Paul H, Edwards Sean P, Hollister Scott J

机构信息

1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan.

2 School of Dentistry, University of Michigan , Ann Arbor, Michigan.

出版信息

Tissue Eng Part C Methods. 2015 Sep;21(9):889-97. doi: 10.1089/ten.TEC.2014.0643. Epub 2015 Jul 22.

Abstract

Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.

摘要

聚己内酯(PCL)是一种生物相容性聚合物,其机械性能适用于骨组织工程;然而,它必须与生物制剂结合以刺激骨形成。从PCL递送的骨形态发生蛋白-2(BMP2)皮下植入时可生成骨,而促红细胞生成素(EPO)与BMP2协同发挥作用。在本研究中,EPO和BMP2分别吸附在两个3D打印的PCL支架模块上,这两个模块组装后在单个支架结构上进行共递送。与沿复制支架结构递送BMP2相比,这种具有双重BMP2和EPO递送功能的组装式模块化PCL支架在异位部位可促进骨生长。EPO(200 IU/mL)和BMP2(65 μg/mL)分别吸附在模块化支架的外部和内部。首先对蛋白质结合和释放研究进行了定量。随后,将EPO+BMP2和BMP2支架皮下植入小鼠体内4周和8周,并用微型计算机断层扫描和组织学分析再生骨;8.6±1.4 μg BMP2(22%)和140±29 IU EPO(69.8%)与支架结合,7天内<1%的BMP2和83%的EPO释放。EPO吸附的PCL圆盘上内皮细胞增殖增加表明蛋白质具有生物活性。在4周和8周时,双重BMP2和EPO递送再生的骨(5.1±1.1和5.5±1.6 mm³)比单独的BMP2(3.8±1.1和4.3±1.7 mm³)更多。与4周时的BMP2(0.8%±0.3%)相比,BMP2和EPO支架在外模块中的向内生长更多(1.4%±0.6%)。双重递送产生的细胞性骨髓更致密,而BMP2产生的脂肪性骨髓更多。双重EPO和BMP2递送是一种可能更快地为预制皮瓣再生骨的方法。

相似文献

1
Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps.
Tissue Eng Part C Methods. 2015 Sep;21(9):889-97. doi: 10.1089/ten.TEC.2014.0643. Epub 2015 Jul 22.
3
Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
Spine J. 2018 May;18(5):818-830. doi: 10.1016/j.spinee.2017.12.002. Epub 2017 Dec 18.
6
An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
J Tissue Eng Regen Med. 2013 Sep;7(9):687-96. doi: 10.1002/term.1456. Epub 2012 Mar 7.
8
Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments.
J Biomed Mater Res A. 2014 Sep;102(9):2993-3003. doi: 10.1002/jbm.a.34970. Epub 2013 Oct 7.
9
Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.
Cell Tissue Res. 2012 Mar;347(3):575-88. doi: 10.1007/s00441-011-1197-3. Epub 2011 Jun 22.

引用本文的文献

1
Three-Dimensional Printing Strategies for Irregularly Shaped Cartilage Tissue Engineering: Current State and Challenges.
Front Bioeng Biotechnol. 2022 Jan 5;9:777039. doi: 10.3389/fbioe.2021.777039. eCollection 2021.
2
Development of novel gene carrier using modified nano hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells.
Bioact Mater. 2021 Feb 13;6(9):2742-2751. doi: 10.1016/j.bioactmat.2021.01.020. eCollection 2021 Sep.
3
Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications.
Nanomaterials (Basel). 2020 Aug 17;10(8):1609. doi: 10.3390/nano10081609.
4
Erythropoietin modulates bone marrow stromal cell differentiation.
Bone Res. 2019 Jul 25;7:21. doi: 10.1038/s41413-019-0060-0. eCollection 2019.
5
JAK2/STAT3/BMP-2 axis and NF-κB pathway are involved in erythropoietin-induced calcification in rat vascular smooth muscle cells.
Clin Exp Nephrol. 2019 Apr;23(4):501-512. doi: 10.1007/s10157-018-1666-z. Epub 2018 Nov 7.
6
Cell Type Influences Local Delivery of Biomolecules from a Bioinspired Apatite Drug Delivery System.
Materials (Basel). 2018 Sep 13;11(9):1703. doi: 10.3390/ma11091703.
7
Bone Graft Prefabrication Following the In Vivo Bioreactor Principle.
EBioMedicine. 2016 Oct;12:43-54. doi: 10.1016/j.ebiom.2016.09.016. Epub 2016 Sep 20.
8
Multigrowth Factor Delivery via Immobilization of Gene Therapy Vectors.
Adv Mater. 2016 Apr;28(16):3145-51. doi: 10.1002/adma.201600027. Epub 2016 Feb 25.

本文引用的文献

2
The effect of erythropoietin on autologous stem cell-mediated bone regeneration.
Biomaterials. 2013 Oct;34(30):7364-71. doi: 10.1016/j.biomaterials.2013.06.031. Epub 2013 Jul 4.
5
Concise review: personalized human bone grafts for reconstructing head and face.
Stem Cells Transl Med. 2012 Jan;1(1):64-9. doi: 10.5966/sctm.2011-0020. Epub 2011 Dec 7.
6
Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone.
Tissue Eng Part A. 2012 Oct;18(19-20):2095-105. doi: 10.1089/ten.TEA.2011.0742. Epub 2012 Aug 10.
7
Can local Erythropoietin administration enhance bone regeneration in osteonecrosis of femoral head?
Med Hypotheses. 2012 Aug;79(2):154-6. doi: 10.1016/j.mehy.2012.04.021. Epub 2012 May 20.
8
Novel erythropoietin-loaded nanoparticles with prolonged in vivo response.
J Microencapsul. 2012;29(7):650-6. doi: 10.3109/02652048.2012.680507. Epub 2012 Apr 25.
9
Effects of erythropoietin on the bone microenvironment.
Growth Factors. 2012 Feb;30(1):22-8. doi: 10.3109/08977194.2011.637034. Epub 2011 Nov 28.
10
Scaffold translation: barriers between concept and clinic.
Tissue Eng Part B Rev. 2011 Dec;17(6):459-74. doi: 10.1089/ten.TEB.2011.0251. Epub 2011 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验