Eghiaian Frédéric, Rigato Annafrancesca, Scheuring Simon
U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France.
U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France.
Biophys J. 2015 Mar 24;108(6):1330-1340. doi: 10.1016/j.bpj.2015.01.016.
In eukaryotic cells, an actin-based cortex lines the inner leaflet of the plasma membrane, endowing the cells with crucial mechanical and functional properties. Unfortunately, it has not been possible to study the structural dynamics of the actin cortex at high lateral resolution in living cells. Here, we performed atomic force microscopy time-lapse imaging and mechanical mapping of actin in the cortex of living cells at high lateral and temporal resolution. Cortical actin filaments adopted discernible arrangements, ranging from large parallel bundles with low connectivity to a tight meshwork of short filaments. Mixing of these architectures resulted in attuned cortex networks with specific connectivity, mechanical responses, and marked differences in their dynamic behavior.
在真核细胞中,基于肌动蛋白的皮质层排列在质膜的内小叶上,赋予细胞关键的机械和功能特性。遗憾的是,在活细胞中以高横向分辨率研究肌动蛋白皮质层的结构动力学一直无法实现。在此,我们进行了原子力显微镜延时成像,并以高横向和时间分辨率对活细胞皮质层中的肌动蛋白进行了力学测绘。皮质肌动蛋白丝呈现出可辨别的排列方式,从连接性低的大型平行束到短丝紧密网络不等。这些结构的混合产生了具有特定连接性、力学响应以及动态行为显著差异的协调皮质网络。