Suppr超能文献

功能获得性血管性血友病因子疾病中突变引起的力诱导结合速率切换和调节

Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases.

作者信息

Kim Jongseong, Hudson Nathan E, Springer Timothy A

机构信息

Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115; and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.

Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115; and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4648-53. doi: 10.1073/pnas.1501689112. Epub 2015 Mar 25.

Abstract

Mutations in the ultralong vascular protein von Willebrand factor (VWF) cause the common human bleeding disorder, von Willebrand disease (VWD). The A1 domain in VWF binds to glycoprotein Ibα (GPIbα) on platelets, in a reaction triggered, in part, by alterations in flow during bleeding. Gain-of-function mutations in A1 and GPIbα in VWD suggest conformational regulation. We report that force application switches A1 and/or GPIbα to a second state with faster on-rate, providing a mechanism for activating VWF binding to platelets. Switching occurs near 10 pN, a force that also induces a state of the receptor-ligand complex with slower off-rate. Force greatly increases the effects of VWD mutations, explaining pathophysiology. Conversion of single molecule kon (s(-1)) to bulk phase kon (s(-1)M(-1)) and the kon and koff values extrapolated to zero force for the low-force pathways show remarkably good agreement with bulk-phase measurements.

摘要

超长血管蛋白血管性血友病因子(VWF)的突变会导致常见的人类出血性疾病——血管性血友病(VWD)。VWF中的A1结构域与血小板上的糖蛋白Ibα(GPIbα)结合,这一反应部分由出血时血流变化引发。VWD中A1和GPIbα的功能获得性突变提示存在构象调节。我们报告,施加力会将A1和/或GPIbα转换为结合速率更快的第二种状态,为激活VWF与血小板的结合提供了一种机制。转换发生在接近10皮牛的力时,该力还会诱导受体-配体复合物进入解离速率较慢的状态。力极大地增强了VWD突变的影响,解释了病理生理学机制。单分子结合速率常数kon(s⁻¹)转换为体相kon(s⁻¹M⁻¹),以及低力途径外推至零力时的kon和koff值与体相测量结果显示出非常好的一致性。

相似文献

1
Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4648-53. doi: 10.1073/pnas.1501689112. Epub 2015 Mar 25.
3
Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain.
Science. 2002 Aug 16;297(5584):1176-9. doi: 10.1126/science.107355.
9
GPIbα-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease.
Biophys J. 2011 Jan 19;100(2):304-12. doi: 10.1016/j.bpj.2010.11.084.
10

引用本文的文献

1
Von Willebrand factor and hematogenous cancer metastasis under flow.
Front Cell Dev Biol. 2024 Aug 30;12:1435718. doi: 10.3389/fcell.2024.1435718. eCollection 2024.
3
Autoinhibitory module underlies species difference in shear activation of von Willebrand factor.
J Thromb Haemost. 2022 Nov;20(11):2686-2696. doi: 10.1111/jth.15837. Epub 2022 Aug 29.
5
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective.
Biophys Rev. 2022 Apr 6;14(2):427-461. doi: 10.1007/s12551-022-00950-w. eCollection 2022 Apr.
6
Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond.
Mol Cells. 2022 Jan 31;45(1):16-25. doi: 10.14348/molcells.2022.2026.
8
Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF.
BMC Mol Cell Biol. 2020 Sep 11;21(1):64. doi: 10.1186/s12860-020-00309-7.
10
Force-Regulated Refolding of the Mechanosensory Domain in the Platelet Glycoprotein Ib-IX Complex.
Biophys J. 2019 May 21;116(10):1960-1969. doi: 10.1016/j.bpj.2019.03.037. Epub 2019 Apr 8.

本文引用的文献

1
Exploiting the kinetic interplay between GPIbα-VWF binding interfaces to regulate hemostasis and thrombosis.
Blood. 2014 Dec 11;124(25):3799-807. doi: 10.1182/blood-2014-04-569392. Epub 2014 Oct 7.
2
von Willebrand factor, Jedi knight of the bloodstream.
Blood. 2014 Aug 28;124(9):1412-25. doi: 10.1182/blood-2014-05-378638. Epub 2014 Jun 13.
3
Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib.
J Biol Chem. 2014 Feb 28;289(9):5565-79. doi: 10.1074/jbc.M113.511220. Epub 2014 Jan 3.
4
Kinetics and energetics of biomolecular folding and binding.
Biophys J. 2013 Nov 5;105(9):L19-22. doi: 10.1016/j.bpj.2013.09.023.
5
A transformation for the mechanical fingerprints of complex biomolecular interactions.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16432-7. doi: 10.1073/pnas.1309101110. Epub 2013 Sep 23.
7
Platelet-type von Willebrand disease: new insights into the molecular pathophysiology of a unique platelet defect.
Semin Thromb Hemost. 2013 Sep;39(6):663-73. doi: 10.1055/s-0033-1353442. Epub 2013 Aug 11.
8
Defining single molecular forces required to activate integrin and notch signaling.
Science. 2013 May 24;340(6135):991-4. doi: 10.1126/science.1231041.
9
Dynamic force sensing of filamin revealed in single-molecule experiments.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19679-84. doi: 10.1073/pnas.1211274109. Epub 2012 Nov 13.
10
The international society on thrombosis and haematosis von Willebrand disease database: an update.
Semin Thromb Hemost. 2011 Jul;37(5):470-9. doi: 10.1055/s-0031-1281031. Epub 2011 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验