Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16432-7. doi: 10.1073/pnas.1309101110. Epub 2013 Sep 23.
Biological processes are carried out through molecular conformational transitions, ranging from the structural changes within biomolecules to the formation of macromolecular complexes and the associations between the complexes themselves. These transitions cover a vast range of timescales and are governed by a tangled network of molecular interactions. The resulting hierarchy of interactions, in turn, becomes encoded in the experimentally measurable "mechanical fingerprints" of the biomolecules, their force-extension curves. However, how can we decode these fingerprints so that they reveal the kinetic barriers and the associated timescales of a biological process? Here, we show that this can be accomplished with a simple, model-free transformation that is general enough to be applicable to molecular interactions involving an arbitrarily large number of kinetic barriers. Specifically, the transformation converts the mechanical fingerprints of the system directly into a map of force-dependent rate constants. This map reveals the kinetics of the multitude of rate processes in the system beyond what is typically accessible to direct measurements. With the contributions from individual barriers to the interaction network now "untangled", the map is straightforward to analyze in terms of the prominent barriers and timescales. Practical implementation of the transformation is illustrated with simulated biomolecular interactions that comprise different patterns of complexity--from a cascade of activation barriers to competing dissociation pathways.
生物过程是通过分子构象转变来进行的,范围从生物分子内的结构变化到大分子复合物的形成以及复合物之间的相互作用。这些转变涵盖了广泛的时间尺度,并受到分子相互作用的复杂网络的控制。由此产生的相互作用层次结构,反过来又被生物分子的实验可测量的“力学指纹”,即它们的力-伸长曲线所编码。然而,我们如何解码这些指纹,以便揭示生物过程的动力学障碍和相关时间尺度?在这里,我们表明可以通过一种简单的、无模型的变换来实现这一点,这种变换足够通用,可以应用于涉及任意数量动力学障碍的分子相互作用。具体来说,该变换将系统的力学指纹直接转换为力依赖的速率常数图。该图谱揭示了系统中多种速率过程的动力学,超出了直接测量通常可获得的范围。由于相互作用网络中各个障碍的贡献现在“解开”了,因此可以根据显著的障碍和时间尺度来轻松分析图谱。该变换的实际实现通过模拟生物分子相互作用来说明,这些相互作用包含不同复杂模式——从级联激活障碍到竞争解离途径。