Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China.
Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS Biol. 2015 Mar 26;13(3):e1002103. doi: 10.1371/journal.pbio.1002103. eCollection 2015 Mar.
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.
自噬有助于将隔离的细胞内货物递送至溶酶体进行蛋白水解降解,从而通过防止细胞内有毒物质的积累来维持细胞内的平衡。在一项旨在鉴定神经元功能和维持所需基因的果蝇正向镶嵌筛选中,我们鉴定了多个 cacophony (cac) 突变等位基因。它们表现出光感受器末端的自噬小泡 (AVs) 随年龄的积累,最终末端和周围神经胶质退化。 cac 编码一种果蝇电压门控钙通道 (VGCC) 的α1 亚基,该亚基对于与质膜融合的突触小泡和神经递质释放是必需的。在这里,我们表明 cac 突变的光感受器末端积累了 AV-溶酶体融合中间产物,这表明 Cac 对于 AV 与溶酶体的融合是必需的,而这一过程尚未得到充分定义。另一个 VGCC 亚基α2δ或直筒夹克(stj)的缺失会导致与 cac 缺失非常相似的表型,这表明 VGCC 对于 AV-溶酶体融合是必需的。VGCC 在 AV-溶酶体融合中的作用在进化上是保守的,因为其小鼠同源物 cacna1a 和 cacna2d2 的缺失也会导致小鼠的自噬缺陷。此外,我们发现 CACNA1A 定位于溶酶体,小脑培养神经元中溶酶体 CACNA1A 的缺失会导致溶酶体与内体和自噬体融合失败。最后,我们表明溶酶体 CACNA1A 而不是质膜驻留的 CACNA1A 对于溶酶体融合是必需的。总之,我们提出了一个模型,即 VGCC 通过其钙通道活性调节 AV 与溶酶体的融合,从而在维持神经元内稳态中发挥作用,从而在自噬中发挥作用。