Suppr超能文献

用于树种生物特征识别的树干图像纹理统计分析

Statistical analysis of texture in trunk images for biometric identification of tree species.

作者信息

Bressane Adriano, Roveda José A F, Martins Antônio C G

机构信息

UNESP - Univ Estadual Paulista, Avenida Três de Março, 511, Boa Vista, Sorocaba, SP, CEP 18087-180, Brazil,

出版信息

Environ Monit Assess. 2015 Apr;187(4):212. doi: 10.1007/s10661-015-4400-2. Epub 2015 Mar 27.

Abstract

The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year. Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.

摘要

树种识别是森林资源可持续管理计划的关键步骤,也是基于此类调查的其他多种应用的关键步骤。然而,目前可用的技术依赖于树木结构的存在,如花朵、果实和树叶,这将识别过程限制在一年中的特定时期。因此,本文介绍了一项关于统计参数在树干图像纹理分类中的应用研究。为此,采集了来自巴西五种本土落叶树种的540个样本,并从所呈现的纹理中获取了熵、均匀性、平滑度、不对称性(第三矩)、均值和标准差的测量值。使用决策树构建了一个生物特征树种识别系统,物种分类的平均精确率为0.84,准确率为0.83,一致性为0.79。因此,可以认为,树干图像中呈现的纹理的使用代表了树木识别方面的一项重要进展,因为可以克服当前技术的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验