Suppr超能文献

心脏为何颤动:扭曲的微弱运动。

Why hearts flutter: Distorted dim motions.

作者信息

Anstis Stuart, Macleod Don

机构信息

Department of Psychology, University of California, San Diego, La Jolla, CA.

出版信息

J Vis. 2015 Mar 26;15(3):23. doi: 10.1167/15.3.23.

Abstract

When a display of red spots or hearts on a blue surround is moved around under dim light, the spots appear to wobble or flutter relative to the surround (the "fluttering hearts" effect). We explain this as follows: Rods and cones both respond to the hearts. Rods are more sluggish than cones, with a latency of ∼50 ms, and they are also much more sensitive to blue than to red (the Purkinje shift; Purkinje, 1825). Thus a red spot oscillating on a blue ground produces a double image: a light spot seen by the cones, followed by a trailing dark spot seen by the rods. These interacting spots of opposite luminance polarity move like "reverse phi" (Anstis, 1970) and this generates the fluttering hearts effect. We find that hearts flutter most markedly at or near mesopic equiluminance, when the red is lighter than the blue as seen by the cones, but darker than the blue as seen by the rods. These same red/blue luminance ratios give rise to two new illusions: the ghostly twin illusion, and the reversal of red/blue grating movement.

摘要

当一个蓝色背景上的红色斑点或心形图案在昏暗光线下移动时,这些斑点相对于背景似乎会摇晃或颤动(“颤动的心形”效应)。我们对此的解释如下:视杆细胞和视锥细胞都会对心形图案做出反应。视杆细胞比视锥细胞反应更迟缓,潜伏期约为50毫秒,并且它们对蓝色的敏感度远高于红色(浦肯野效应;浦肯野,1825年)。因此,在蓝色背景上振荡的红色斑点会产生双重图像:视锥细胞看到的亮点,随后是视杆细胞看到的拖尾暗点。这些具有相反亮度极性的相互作用的斑点像“反向φ现象”(安斯蒂斯,1970年)一样移动,这就产生了颤动的心形效应。我们发现,当红色在心形图案中的亮度相对于视锥细胞所见的蓝色更亮,但相对于视杆细胞所见的蓝色更暗时,心形图案在中间视觉等亮度条件下或接近该条件时颤动最为明显。这些相同的红/蓝亮度比会产生两种新的错觉:幽灵双胞胎错觉以及红/蓝光栅运动反转。

相似文献

1
Why hearts flutter: Distorted dim motions.
J Vis. 2015 Mar 26;15(3):23. doi: 10.1167/15.3.23.
2
The Purkinje rod-cone shift as a function of luminance and retinal eccentricity.
Vision Res. 2002 Oct;42(22):2485-91. doi: 10.1016/s0042-6989(02)00267-5.
3
Mesopic luminance assessed with minimum motion photometry.
J Vis. 2011 Aug 25;11(9):14. doi: 10.1167/11.9.14.
4
Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
Invest Ophthalmol Vis Sci. 2016 Jan 1;57(1):276-87. doi: 10.1167/iovs.15-18197.
7
Why rods and cones?
Eye (Lond). 2016 Feb;30(2):179-85. doi: 10.1038/eye.2015.236. Epub 2015 Nov 13.
8
Why are rods more sensitive than cones?
J Physiol. 2016 Oct 1;594(19):5415-26. doi: 10.1113/JP272556. Epub 2016 Jul 21.
9
Thresholds and noise limitations of colour vision in dim light.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0065.
10
[Physiology of the visual retinal signal: From phototransduction to the visual cycle].
J Fr Ophtalmol. 2017 Mar;40(3):239-250. doi: 10.1016/j.jfo.2016.12.006. Epub 2017 Mar 17.

引用本文的文献

1
Rod responses produce the peripheral flicker illusion.
Iperception. 2025 Apr 23;16(2):20416695251333732. doi: 10.1177/20416695251333732. eCollection 2025 Mar-Apr.
2
The Peripheral Flicker Illusion.
Iperception. 2017 Dec 20;8(6):2041669517747891. doi: 10.1177/2041669517747891. eCollection 2017 Nov-Dec.

本文引用的文献

1
Mesopic luminance assessed with minimum motion photometry.
J Vis. 2011 Aug 25;11(9):14. doi: 10.1167/11.9.14.
2
Optokinetic technique for measuring infants' responses to color.
Appl Opt. 1987 Apr 15;26(8):1510-6. doi: 10.1364/AO.26.001510.
3
Sensitivity for reverse-phi motion.
Vision Res. 2009 Jan;49(1):1-9. doi: 10.1016/j.visres.2008.09.014. Epub 2008 Nov 5.
6
Motion-induced spatial conflict.
Nature. 2003 Sep 11;425(6954):181-4. doi: 10.1038/nature01955.
7
The fluttering-heart illusion: a new hypothesis.
Perception. 2003;32(5):627-34. doi: 10.1068/p3228.
8
The Purkinje rod-cone shift as a function of luminance and retinal eccentricity.
Vision Res. 2002 Oct;42(22):2485-91. doi: 10.1016/s0042-6989(02)00267-5.
10
Screening for color blindness using optokinetic nystagmus.
Invest Ophthalmol Vis Sci. 1984 Apr;25(4):463-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验