Suppr超能文献

化脓性链球菌NAD(+)糖水解酶调节上皮细胞聚(ADP-核糖)化及高迁移率族蛋白B1释放。

The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release.

作者信息

Chandrasekaran Sukantha, Caparon Michael G

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Cell Microbiol. 2015 Sep;17(9):1376-90. doi: 10.1111/cmi.12442. Epub 2015 Apr 28.

Abstract

Streptococcus pyogenes uses the cytolysin streptolysin O (SLO) to translocate an enzyme, the S. pyogenes NAD(+) glycohydrolase (SPN), into the host cell cytosol. However, the function of SPN in this compartment is not known. As a complication, many S. pyogenes strains express a SPN variant lacking NAD(+) glycohydrolase (NADase) activity. Here, we show that SPN modifies several SLO- and NAD(+) -dependent host cell responses in patterns that correlate with NADase activity. SLO pore formation results in hyperactivation of the cellular enzyme poly-ADP-ribose polymerase-1 (PARP-1) and production of polymers of poly-ADP-ribose (PAR). However, while SPN NADase activity moderates PARP-1 activation and blocks accumulation of PAR, these processes continued unabated in the presence of NADase-inactive SPN. Temporal analyses revealed that while PAR production is initially independent of NADase activity, PAR rapidly disappears in the presence of NADase-active SPN, host cell ATP is depleted and the pro-inflammatory mediator high-mobility group box-1 (HMGB1) protein is released from the nucleus by a PARP-1-dependent mechanism. In contrast, HMGB1 is not released in response to NADase-inactive SPN and instead the cells release elevated levels of interleukin-8 and tumour necrosis factor-α. Thus, SPN and SLO combine to induce cellular responses subsequently influenced by the presence or absence of NADase activity.

摘要

化脓性链球菌利用细胞溶素链球菌溶血素O(SLO)将一种酶,即化脓性链球菌NAD⁺糖水解酶(SPN)转运到宿主细胞胞质溶胶中。然而,SPN在这个区室中的功能尚不清楚。复杂的是,许多化脓性链球菌菌株表达一种缺乏NAD⁺糖水解酶(NAD酶)活性的SPN变体。在这里,我们表明SPN以与NAD酶活性相关的模式改变了几种SLO和NAD⁺依赖性宿主细胞反应。SLO孔的形成导致细胞酶聚ADP核糖聚合酶-1(PARP-1)过度激活并产生聚ADP核糖(PAR)聚合物。然而,虽然SPN的NAD酶活性可调节PARP-1的激活并阻止PAR的积累,但在存在无NAD酶活性的SPN时,这些过程仍未减弱地持续进行。时间分析表明,虽然PAR的产生最初与NAD酶活性无关,但在存在有NAD酶活性的SPN时PAR会迅速消失,宿主细胞ATP被耗尽,促炎介质高迁移率族蛋白B1(HMGB1)通过PARP-1依赖性机制从细胞核中释放出来。相比之下,HMGB1不会因无NAD酶活性的SPN而释放,相反,细胞会释放升高水平的白细胞介素-8和肿瘤坏死因子-α。因此,SPN和SLO共同诱导细胞反应,随后这些反应受NAD酶活性的有无影响。

相似文献

1
The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release.
Cell Microbiol. 2015 Sep;17(9):1376-90. doi: 10.1111/cmi.12442. Epub 2015 Apr 28.
6
Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase.
J Biol Chem. 2006 Mar 24;281(12):8216-23. doi: 10.1074/jbc.M511674200. Epub 2006 Jan 23.
7
Group A NAD-Glycohydrolase Inhibits Caveolin 1-Mediated Internalization Into Human Epithelial Cells.
Front Cell Infect Microbiol. 2019 Nov 28;9:398. doi: 10.3389/fcimb.2019.00398. eCollection 2019.
8
Variation in Streptococcus pyogenes NAD+ glycohydrolase is associated with tissue tropism.
J Bacteriol. 2010 Jul;192(14):3735-46. doi: 10.1128/JB.00234-10. Epub 2010 May 21.
10
NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.
PLoS Pathog. 2016 Mar 3;12(3):e1005468. doi: 10.1371/journal.ppat.1005468. eCollection 2016 Mar.

引用本文的文献

2
Roles of ADP-Ribosylation during Infection Establishment by Parasites.
Pathogens. 2023 May 12;12(5):708. doi: 10.3390/pathogens12050708.
4
PARP Inhibitors: An Innovative Approach to the Treatment of Inflammation and Metabolic Disorders in Sepsis.
J Inflamm Res. 2021 May 6;14:1827-1844. doi: 10.2147/JIR.S300679. eCollection 2021.
5
ADP-ribosylation in evasion, promotion and exacerbation of immune responses.
Immunology. 2021 Sep;164(1):15-30. doi: 10.1111/imm.13332. Epub 2021 Apr 12.
6
The signaling peptide SpoV regulates streptolysin O and enhances survival in murine blood.
J Bacteriol. 2021 Jun 1;203(11). doi: 10.1128/JB.00586-20. Epub 2021 Mar 15.
10
Group A NAD-Glycohydrolase Inhibits Caveolin 1-Mediated Internalization Into Human Epithelial Cells.
Front Cell Infect Microbiol. 2019 Nov 28;9:398. doi: 10.3389/fcimb.2019.00398. eCollection 2019.

本文引用的文献

1
Disease manifestations and pathogenic mechanisms of Group A Streptococcus.
Clin Microbiol Rev. 2014 Apr;27(2):264-301. doi: 10.1128/CMR.00101-13.
2
HMGB1 in severe soft tissue infections caused by Streptococcus pyogenes.
Front Cell Infect Microbiol. 2014 Jan 30;4:4. doi: 10.3389/fcimb.2014.00004. eCollection 2014.
3
Role of pore-forming toxins in bacterial infectious diseases.
Microbiol Mol Biol Rev. 2013 Jun;77(2):173-207. doi: 10.1128/MMBR.00052-12.
4
5
Poly(ADP-ribose) signaling in cell death.
Mol Aspects Med. 2013 Dec;34(6):1153-67. doi: 10.1016/j.mam.2013.01.007. Epub 2013 Feb 15.
6
Oncosis: an important non-apoptotic mode of cell death.
Exp Mol Pathol. 2012 Dec;93(3):302-8. doi: 10.1016/j.yexmp.2012.09.018. Epub 2012 Oct 1.
7
Metabolic stress in autophagy and cell death pathways.
Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a008763. doi: 10.1101/cshperspect.a008763.
8
New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs.
Nat Rev Mol Cell Biol. 2012 Jun 20;13(7):411-24. doi: 10.1038/nrm3376.
9
On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1.
Genes Dev. 2012 Mar 1;26(5):417-32. doi: 10.1101/gad.183509.111.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验