Herrera Andrea L, Callegari Eduardo A, Chaussee Michael S
Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota.
Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota
J Bacteriol. 2021 Jun 1;203(11). doi: 10.1128/JB.00586-20. Epub 2021 Mar 15.
(Group A , GAS) is a human pathogen that causes a wide range of diseases. For successful colonization within a variety of host niches, GAS must sense and respond to environmental changes. Intercellular communication mediated by peptides is one way GAS coordinates gene expression in response to diverse environmental stressors, which enhances bacterial survival and contributes to virulence. Using peptidomics we identified SpoV (treptococcal eptide cntrolling irulence) in culture supernatant fluids. SpoV is a secreted peptide encoded near the gene encoding the extracellular cholesterol-dependent cytolysin streptolysin O ( The addition of synthetic SpoV peptide derivatives, but not control peptides, increased transcript abundance in an M49 isolate but not in an M3 isolate. Deletion of decreased transcript abundance, extracellular SLO protein levels, and SLO-specific hemolytic activity. Complementation of the mutant increased transcript abundance. Lastly, a mutant was deficient in the ability to survive in murine blood compared to the parental strain. Moreover, pre-incubation of the mutant with synthetic SpoV peptide derivatives increased GAS survival. Our findings show that expression is regulated, in part, by the GAS-specific signaling peptide SpoV.GAS secretes signaling peptides that can alter gene expression and impact virulence. We used peptidomics to identify a signaling peptide designated SpoV. Further, we showed that SpoV altered the expression of the cholesterol-dependent cytolysin SLO. Peptide signaling plays an important regulatory role during disease progression among several bacterial pathogens, including GAS. The therapeutic potential of manipulating peptide-controlled regulatory networks is an attractive option for the development of novel therapeutic strategies that disrupt virulence gene expression.
A组化脓性链球菌(GAS)是一种可引发多种疾病的人类病原体。为了在各种宿主生态位中成功定殖,GAS必须感知并响应环境变化。由肽介导的细胞间通讯是GAS协调基因表达以应对各种环境应激源的一种方式,这增强了细菌的生存能力并有助于其毒力。我们通过肽组学在培养上清液中鉴定出SpoV(链球菌肽控制毒力)。SpoV是一种分泌肽,其编码位置靠近编码细胞外胆固醇依赖性细胞溶素链球菌溶血素O的基因(添加合成的SpoV肽衍生物而非对照肽,可增加M49分离株中的转录本丰度,但在M3分离株中则不然。缺失spoV会降低转录本丰度、细胞外SLO蛋白水平和SLO特异性溶血活性。spoV突变体的互补增加了转录本丰度。最后,与亲本菌株相比,spoV突变体在小鼠血液中的存活能力不足。此外,用合成的SpoV肽衍生物对spoV突变体进行预孵育可提高GAS的存活率。我们的研究结果表明,spoV的表达部分受GAS特异性信号肽SpoV的调节。GAS分泌的信号肽可改变基因表达并影响毒力。我们利用肽组学鉴定出一种名为SpoV的信号肽。此外,我们还表明SpoV改变了胆固醇依赖性细胞溶素SLO的表达。肽信号传导在包括GAS在内的几种细菌病原体的疾病进展过程中发挥着重要的调节作用。操纵肽控制的调节网络的治疗潜力是开发破坏毒力基因表达的新型治疗策略的一个有吸引力的选择。