Girard G M A, Hilder M, Zhu H, Nucciarone D, Whitbread K, Zavorine S, Moser M, Forsyth M, MacFarlane D R, Howlett P C
Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia.
Phys Chem Chem Phys. 2015 Apr 14;17(14):8706-13. doi: 10.1039/c5cp00205b. Epub 2015 Mar 4.
Electrolytes of a room temperature ionic liquid (RTIL), trimethyl(isobutyl)phosphonium (P111i4) bis(fluorosulfonyl)imide (FSI) with a wide range of lithium bis(fluorosulfonyl)imide (LiFSI) salt concentrations (up to 3.8 mol kg(-1) of salt in the RTIL) were characterised using a combination of techniques including viscosity, conductivity, differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), nuclear magnetic resonance (NMR) and cyclic voltammetry (CV). We show that the FSI-based electrolyte containing a high salt concentration (e.g. 1 : 1 salt to IL molar ratio, equivalent to 3.2 mol kg(-1) of LiFSI) displays unusual transport behavior with respect to lithium ion mobility and promising electrochemical behavior, despite an increase in viscosity. These electrolytes could compete with the more traditionally studied nitrogen-based ionic liquids (ILs) in lithium battery applications.
使用包括粘度、电导率、差示扫描量热法(DSC)、电化学阻抗谱(EIS)、核磁共振(NMR)和循环伏安法(CV)等多种技术,对室温离子液体(RTIL)三甲基(异丁基)鏻(P111i4)双(氟磺酰)亚胺(FSI)与各种浓度的双(氟磺酰)亚胺锂(LiFSI)盐(在RTIL中盐浓度高达3.8 mol kg⁻¹)的电解质进行了表征。我们表明,尽管粘度增加,但含有高盐浓度的基于FSI的电解质(例如盐与离子液体的摩尔比为1∶1,相当于3.2 mol kg⁻¹的LiFSI)在锂离子迁移率方面表现出异常的传输行为,并具有良好的电化学行为。这些电解质在锂电池应用中可以与更传统研究的氮基离子液体(ILs)相竞争。