Suppr超能文献

室温下高性能高压锂电池用浓缩离子液体电解质。

Concentrated Ionic-Liquid-Based Electrolytes for High-Voltage Lithium Batteries with Improved Performance at Room Temperature.

机构信息

Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.

Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.

出版信息

ChemSusChem. 2019 Sep 20;12(18):4185-4193. doi: 10.1002/cssc.201901739. Epub 2019 Aug 13.

Abstract

Ionic liquids (ILs) have been widely explored as alternative electrolytes to combat the safety issues associated with conventional organic electrolytes. However, hindered by their relatively high viscosity, the electrochemical performances of IL-based cells are generally assessed at medium-to-high temperature and limited cycling rate. A suitable combination of alkoxy-functionalized cations with asymmetric imide anions can effectively lower the lattice energy and improve the fluidity of the IL material. The Li/Li Ni Mn O cell employing N-N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (DEMEFTFSI)-based electrolyte delivered an initial capacity of 153 mAh g within the voltage range of 2.5-4.6 V, with a capacity retention of 65.5 % after 500 cycles and stable coulombic efficiencies exceeding 99.5 %. Moreover, preliminary battery tests demonstrated that the drawbacks in terms of rate capability could be improved by using Li-concentrated IL-based electrolytes. The improved room-temperature rate performance of these electrolytes was likely owing to the formation of Li -containing aggregate species, changing the concentration-dependent Li-ion transport mechanism.

摘要

离子液体 (ILs) 已被广泛探索作为替代电解质,以解决与传统有机电解质相关的安全问题。然而,由于其相对较高的粘度,基于 IL 的电池的电化学性能通常在中高温和有限的循环速率下进行评估。烷氧基官能化阳离子与不对称亚胺阴离子的适当组合可以有效地降低晶格能并提高 IL 材料的流动性。采用 N-N-二乙基-N-甲基-N-(2-甲氧基乙基)铵 (氟磺酰基)(三氟甲磺酰基)亚胺 (DEMEFTFSI) 基电解质的 Li/LiNiMn 电池在 2.5-4.6 V 的电压范围内提供了 153 mAh g 的初始容量,经过 500 次循环后容量保持率为 65.5%,库仑效率稳定在 99.5%以上。此外,初步的电池测试表明,使用 Li 浓缩 IL 基电解质可以改善倍率性能方面的缺点。这些电解质的室温倍率性能得到改善可能是由于形成了含有 Li 的聚集体物种,改变了浓度依赖性的 Li 离子传输机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfa/6852532/98caa1657743/CSSC-12-4185-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验