Eade Rosie, Smith Doug, Scaife Adam, Wallace Emily, Dunstone Nick, Hermanson Leon, Robinson Niall
Met Office Hadley Centre Exeter, UK.
Geophys Res Lett. 2014 Aug 16;41(15):5620-5628. doi: 10.1002/2014GL061146. Epub 2014 Aug 8.
Seasonal-to-decadal predictions are inevitably uncertain, depending on the size of the predictable signal relative to unpredictable chaos. Uncertainties can be accounted for using ensemble techniques, permitting quantitative probabilistic forecasts. In a perfect system, each ensemble member would represent a potential realization of the true evolution of the climate system, and the predictable components in models and reality would be equal. However, we show that the predictable component is sometimes lower in models than observations, especially for seasonal forecasts of the North Atlantic Oscillation and multiyear forecasts of North Atlantic temperature and pressure. In these cases the forecasts are underconfident, with each ensemble member containing too much noise. Consequently, most deterministic and probabilistic measures underestimate potential skill and idealized model experiments underestimate predictability. However, skilful and reliable predictions may be achieved using a large ensemble to reduce noise and adjusting the forecast variance through a postprocessing technique proposed here.
季节到年代际预测不可避免地存在不确定性,这取决于可预测信号相对于不可预测混沌的大小。可以使用集合技术来考虑不确定性,从而实现定量概率预报。在一个完美的系统中,每个集合成员都将代表气候系统真实演变的一种潜在实现,并且模型和现实中的可预测成分将是相等的。然而,我们表明,有时模型中的可预测成分低于观测值,特别是对于北大西洋涛动的季节预测以及北大西洋温度和气压的多年预测。在这些情况下,预报信心不足,每个集合成员包含过多噪声。因此,大多数确定性和概率性度量低估了潜在技能,理想化模型实验低估了可预测性。然而,使用大型集合来减少噪声并通过本文提出的后处理技术调整预报方差,可能会实现有技巧且可靠的预测。