Wei Min, Li Qingquan, Xin Xiaoge, Zhou Wei, Han Zhenyu, Luo Yong, Zhao Zongci
Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; Joint Center for Global Change Studies, Beijing 100875, China; National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China.
Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Sci Bull (Beijing). 2017 Aug 30;62(16):1142-1147. doi: 10.1016/j.scib.2017.08.012. Epub 2017 Aug 10.
Decadal prediction experiments of Beijing Climate Center climate system model version 1.1 (BCC-CSM1.1) participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) had poor skill in extratropics of the North Atlantic, the initialization of which was done by relaxing modeled ocean temperature to the Simple Ocean Data Assimilation (SODA) reanalysis data. This study aims to improve the prediction skill of this model by using the assimilation technique in the initialization. New ocean data are firstly generated by assimilating the sea surface temperature (SST) of the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset to the ocean model of BCC-CSM1.1 via Ensemble Optimum Interpolation (EnOI). Then a suite of decadal re-forecasts launched annually over the period 1961-2005 is carried out with simulated ocean temperature restored to the assimilated ocean data. Comparisons between the re-forecasts and previous CMIP5 forecasts show that the re-forecasts are more skillful in mid-to-high latitude SST of the North Atlantic. Improved prediction skill is also found for the Atlantic multi-decadal oscillation (AMO), which is consistent with the better skill of Atlantic meridional overturning circulation (AMOC) predicted by the re-forecasts. We conclude that the EnOI assimilation generates better ocean data than the SODA reanalysis for initializing decadal climate prediction of BCC-CSM1.1 model.
参与耦合模式比较计划第五阶段(CMIP5)的北京气候中心气候系统模式版本1.1(BCC-CSM1.1)的年代际预测实验,在北大西洋温带地区的预测技巧较差,其初始化是通过将模式海洋温度松弛到简单海洋数据同化(SODA)再分析数据来完成的。本研究旨在通过在初始化过程中使用同化技术来提高该模式的预测技巧。首先,通过集合最优插值(EnOI)将哈德利中心海冰和海表面温度(HadISST)数据集的海表面温度(SST)同化到BCC-CSM1.1的海洋模式中,生成新的海洋数据。然后,在1961 - 2005年期间每年进行一组年代际再预测,将模拟海洋温度恢复到同化后的海洋数据。再预测与之前CMIP5预测的比较表明,再预测在北大西洋中高纬度海表面温度方面更具技巧性。在大西洋多年代际振荡(AMO)方面也发现了预测技巧的提高,这与再预测所预测的大西洋经向翻转环流(AMOC)的更好技巧相一致。我们得出结论,对于初始化BCC-CSM1.1模式的年代际气候预测,EnOI同化产生的海洋数据比SODA再分析更好。