Kammers Kai, Cole Robert N, Tiengwe Calvin, Ruczinski Ingo
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Mass Spectrometry and Proteomics Core Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
EuPA Open Proteom. 2015 Jun;7:11-19. doi: 10.1016/j.euprot.2015.02.002.
We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labeled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.
我们回顾并展示了一种经验贝叶斯方法,即将蛋白质的样本方差向合并估计值收缩,与普通t检验相比,该方法在检测蛋白质丰度的显著变化时能带来更强大且稳定的推断。通过等压质量标记蛋白质组学实验的示例,我们展示了如何同时分析来自多个实验的数据,并讨论了缺失数据对推断的影响。我们还提供了易于使用的开源软件,用于质谱数据的标准化以及基于适度检验统计量的推断。