Bulut N, Castillo J F, Jambrina P G, Kłos J, Roncero O, Aoiz F J, Bañares L
Department of Physics, Firat University , 23169 Elazig̃, Turkey.
Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (Unidad Asociada I+D+i CSIC) , 28040 Madrid, Spain.
J Phys Chem A. 2015 Dec 17;119(50):11951-62. doi: 10.1021/acs.jpca.5b00815. Epub 2015 Apr 13.
Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martı́nez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations.
已经进行了精确的量子反应散射含时波包紧密耦合计算,以确定在10⁻³电子伏特至1.0电子伏特的一系列碰撞能量范围内,对于H₂振转态(v = 0;j = 0、1、2)和(v = 1;j = 0),O(+) + H₂ → OH(+) + H反应的总反应概率和积分截面,使用的是Martínez等人的势能面(PES)。正如无势垒反应所预期的那样,反应截面随碰撞能量Ec迅速衰减,其行为几乎与朗之万模型预测的一致。H₂转动激发到j = 1、2对反应性的影响非常适中,类似于在Ec≈0.3电子伏特以下振动激发时的情况。然而,在较高碰撞能量下,当H₂被激发到v = 1时,截面显著增加。这种效应通过求助于入射通道中的有效势来解释。积分截面已被用于计算200 - 1000 K温度范围内的速率常数。已发现与关于积分截面和速率常数的现有实验数据总体上有很好的一致性。此外,还在同一PES上进行了与时间无关的量子力学和准经典轨迹(QCT)计算,旨在比较各种方法并辨别标题反应的详细机制。特别是,对单个轨迹的分析使得能够根据反应物相对速度与PES地形之间的耦合,解释对于与H₂(v = 0,1,j = 0)反应的QCT反应概率的碰撞能量依赖性中一系列交替的最大值和最小值的存在,而这些在量子力学计算中是不存在的。