Suppr超能文献

基于模型的厄洛替尼体外效应评估,通过实时细胞分析进行测量。

Model-based assessment of erlotinib effect in vitro measured by real-time cell analysis.

作者信息

Benay Stephan, Meille Christophe, Kustermann Stefan, Walter Isabelle, Walz Antje, Gonsard P Alexis, Pietilae Elina, Kratochwil Nicole, Iliadis Athanassios, Roth Adrian, Lave Thierry

机构信息

Pharmacokinetics Unit, SMARTc, Inserm CRO2 UMR S 911, Aix-Marseille University, 13385, Marseille, France.

出版信息

J Pharmacokinet Pharmacodyn. 2015 Jun;42(3):275-85. doi: 10.1007/s10928-015-9415-3. Epub 2015 Mar 31.

Abstract

Real time cell analysis (RTCA) is an impedance-based technology which tracks various living cell characteristics over time, such as their number, morphology or adhesion to the extra cellular matrix. However, there is no consensus about how RTCA data should be used to quantitatively evaluate pharmacodynamic parameters which describe drug efficacy or toxicity. The purpose of this work was to determine how RTCA data can be analyzed with mathematical modeling to explore and quantify drug effect in vitro. The pharmacokinetic-pharmacodynamic erlotinib concentration profile predicted by the model and its effect on the human epidermoïd carcinoma cell line A431 in vitro was measured through RTCA output, designated as cell index. A population approach was used to estimate model parameter values, considering a plate well as the statistical unit. The model related the cell index to the number of cells by means of a proportionality factor. Cell growth was described by an exponential model. A delay between erlotinib pharmacokinetics and cell killing was described by a transit compartment model, and the effect potency, by an E max function of erlotinib concentration. The modeling analysis performed on RTCA data distinguished drug effects in vitro on cell number from other effects likely to modify the relationship between cell index and cell number. It also revealed a time-dependent decrease of erlotinib concentration over time, described by a mono-exponential pharmacokinetic model with nonspecific binding.

摘要

实时细胞分析(RTCA)是一种基于阻抗的技术,可随时间追踪各种活细胞特征,如细胞数量、形态或对细胞外基质的黏附情况。然而,对于如何利用RTCA数据定量评估描述药物疗效或毒性的药效学参数,目前尚无共识。本研究的目的是确定如何通过数学建模分析RTCA数据,以在体外探索和量化药物效应。通过RTCA输出(指定为细胞指数)测量模型预测的厄洛替尼药代动力学-药效学浓度曲线及其对人表皮样癌细胞系A431的体外效应。采用群体方法估计模型参数值,将平板孔作为统计单位。该模型通过一个比例因子将细胞指数与细胞数量关联起来。细胞生长用指数模型描述。厄洛替尼药代动力学与细胞杀伤之间的延迟用转运室模型描述,效应强度用厄洛替尼浓度的Emax函数描述。对RTCA数据进行的建模分析区分了体外药物对细胞数量的效应与可能改变细胞指数和细胞数量之间关系的其他效应。它还揭示了厄洛替尼浓度随时间呈单指数药代动力学模型且伴有非特异性结合的时间依赖性下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验