Suppr超能文献

使用极端稀疏学习进行面部表情的鲁棒表示和识别。

Robust representation and recognition of facial emotions using extreme sparse learning.

出版信息

IEEE Trans Image Process. 2015 Jul;24(7):2140-52. doi: 10.1109/TIP.2015.2416634. Epub 2015 Mar 25.

Abstract

Recognition of natural emotions from human faces is an interesting topic with a wide range of potential applications, such as human-computer interaction, automated tutoring systems, image and video retrieval, smart environments, and driver warning systems. Traditionally, facial emotion recognition systems have been evaluated on laboratory controlled data, which is not representative of the environment faced in real-world applications. To robustly recognize the facial emotions in real-world natural situations, this paper proposes an approach called extreme sparse learning, which has the ability to jointly learn a dictionary (set of basis) and a nonlinear classification model. The proposed approach combines the discriminative power of extreme learning machine with the reconstruction property of sparse representation to enable accurate classification when presented with noisy signals and imperfect data recorded in natural settings. In addition, this paper presents a new local spatio-temporal descriptor that is distinctive and pose-invariant. The proposed framework is able to achieve the state-of-the-art recognition accuracy on both acted and spontaneous facial emotion databases.

摘要

从人脸识别自然情感是一个有趣的话题,具有广泛的潜在应用,如人机交互、自动化辅导系统、图像和视频检索、智能环境和驾驶员预警系统。传统上,面部情感识别系统在实验室控制数据上进行评估,这些数据不能代表实际应用中所面临的环境。为了在真实世界自然情境中稳健地识别面部情感,本文提出了一种称为极端稀疏学习的方法,该方法具有联合学习字典(基集合)和非线性分类模型的能力。所提出的方法结合了极端学习机的判别能力和稀疏表示的重构特性,能够在存在噪声信号和自然环境中记录的不完美数据时进行准确的分类。此外,本文还提出了一种新的局部时空描述符,具有独特性和姿态不变性。所提出的框架能够在人工和自然面部情感数据库上实现最先进的识别精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验