Suppr超能文献

部分几何结构 PET 扫描仪中缺失数据的恢复:在投影空间与图像空间中的补偿。

Recovery of missing data in partial geometry PET scanners: Compensation in projection space vs image space.

机构信息

Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.

School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 193955746, Tehran, Iran.

出版信息

Med Phys. 2018 Dec;45(12):5437-5449. doi: 10.1002/mp.13225. Epub 2018 Oct 25.

Abstract

PURPOSE

Robust and reliable reconstruction of images from noisy and incomplete projection data holds significant potential for proliferation of cost-effective medical imaging technologies. Since conventional reconstruction techniques can generate severe artifacts in the recovered images, a notable line of research constitutes development of appropriate algorithms to compensate for missing data and to reduce noise. In the present work, we investigate the effectiveness of state-of-the-art methodologies developed for image inpainting and noise reduction to preserve the quality of reconstructed images from undersampled PET data. We aimed to assess and ascertain whether missing data recovery is best performed in the projection space prior to reconstruction or adjoined with the reconstruction step in image space.

METHODS

Different strategies for data recovery were investigated using realistic patient derived phantoms (brain and abdomen) in PET scanners with partial geometry (small and large gap structures). Specifically, gap filling strategies in projection space were compared with reconstruction based compensation in image space. The methods used for filling the gap structure in sinogram PET data include partial differential equation based techniques (PDE), total variation (TV) regularization, discrete cosine transform(DCT)-based penalized regression, and dictionary learning based inpainting (DLI). For compensation in image space, compressed sensing based image reconstruction methods were applied. These include the preconditioned alternating projection (PAPA) algorithm with first and higher order total variation (HOTV) regularization as well as dictionary learning based compressed sensing (DLCS). We additionally investigated the performance of the methods for recovery of missing data in the presence of simulated lesion. The impact of different noise levels in the undersampled sinograms on performance of the approaches were also evaluated.

RESULTS

In our first study (brain imaging), DLI was shown to outperform other methods for small gap structure in terms of root mean square error (RMSE) and structural similarity (SSIM), though having relatively high computational cost. For large gap structure, HOTV-PAPA produces better results. In the second study (abdomen imaging), again the best performance belonged to DLI for small gap, and HOTV-PAPA for large gap. In our experiments for lesion simulation on patient brain phantom data, the best performance in term of contrast recovery coefficient (CRC) for small gap simulation belonged to DLI, while in the case of large gap simulation, HOTV-PAPA outperformed others. Our evaluation of the impact of noise on performance of approaches indicated that in case of low and medium noise levels, DLI still produces favorable results among inpainting approaches. However, for high noise levels, the performance of PDE4 (variant of PDE) and DLI are very competitive.

CONCLUSIONS

Our results showed that estimation of missing data in projection space as a preprocessing step before reconstruction can improve the quality of recovered images especially for small gap structures. However, when large portions of data are missing, compressed sensing techniques adjoined with the reconstruction step in image space were the best strategy.

摘要

目的

从噪声和不完整的投影数据中重建稳健可靠的图像,这对推广具有成本效益的医学成像技术具有重要意义。由于传统的重建技术可能会在恢复的图像中产生严重的伪影,因此开发适当的算法来补偿缺失数据和减少噪声是一条重要的研究路线。在本工作中,我们研究了用于图像修复和降噪的最先进方法在从欠采样 PET 数据中保留重建图像质量方面的有效性。我们旨在评估和确定缺失数据的恢复是在重建之前在投影空间中完成还是在图像空间中与重建步骤一起完成。

方法

使用具有部分几何形状(小间隙和大间隙结构)的 PET 扫描仪中的真实患者衍生体(脑和腹部)研究了不同的数据恢复策略。具体而言,比较了投影空间中的间隙填充策略和图像空间中的基于重建的补偿策略。在 sinogram PET 数据中填充间隙结构的方法包括基于偏微分方程的技术(PDE)、总变差(TV)正则化、离散余弦变换(DCT)-基于惩罚回归和基于字典学习的修复(DLI)。在图像空间中进行补偿时,应用了基于压缩感知的图像重建方法。这些方法包括带一阶和高阶全变差(HOTV)正则化的预处理交替投影(PAPA)算法以及基于字典学习的压缩感知(DLCS)。我们还研究了在存在模拟病变的情况下恢复缺失数据的方法的性能。此外,还评估了不同噪声水平对这些方法性能的影响。

结果

在我们的第一项研究(脑成像)中,与其他方法相比,DLI 在小间隙结构的均方根误差(RMSE)和结构相似性(SSIM)方面表现更好,尽管计算成本相对较高。对于大间隙结构,HOTV-PAPA 产生更好的结果。在第二项研究(腹部成像)中,对于小间隙,DLI 再次表现最佳,对于大间隙,HOTV-PAPA 表现最佳。在我们对患者脑体模数据中进行病变模拟的实验中,小间隙模拟的最佳对比恢复系数(CRC)性能属于 DLI,而在大间隙模拟的情况下,HOTV-PAPA 优于其他方法。我们对方法性能的噪声影响的评估表明,在低噪声和中等噪声水平下,DLI 仍然是修复方法中最有利的结果。然而,在高噪声水平下,PDE4(PDE 的变体)和 DLI 的性能非常有竞争力。

结论

我们的结果表明,作为重建前的预处理步骤,在投影空间中估计缺失数据可以提高恢复图像的质量,特别是对于小间隙结构。然而,当大量数据缺失时,与重建步骤一起在图像空间中应用压缩感知技术是最佳策略。

相似文献

本文引用的文献

6
Dictionary learning for data recovery in positron emission tomography.用于正电子发射断层扫描数据恢复的字典学习
Phys Med Biol. 2015 Aug 7;60(15):5853-71. doi: 10.1088/0031-9155/60/15/5853. Epub 2015 Jul 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验