Suppr超能文献

双金属纳米颗粒中的表面偏析:电催化剂工程中的关键问题。

Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering.

机构信息

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Energy Research Institute@NTU, ERI@NNanyang Technological University, Singapore.

出版信息

Small. 2015 Jul 15;11(27):3221-46. doi: 10.1002/smll.201403380. Epub 2015 Mar 30.

Abstract

Bimetallic nanoparticles are a class of important electrocatalyst. They exhibit a synergistic effect that critically depends on the surface composition, which determines the surface properties and the adsorption/desorption behavior of the reactants and intermediates during catalysis. The surface composition can be varied, as nanoparticles are exposed to certain environments through surface segregation. Thermodynamically, this is caused by a difference in surface energy between the two metals. It may lead to the enrichment of one metal on the surface and the other in the core. The external conditions that influence the surface energy may lead to the variation of the thermodynamic steady state of the particle surface and, thus, offer a chance to vary the surface composition. In this review, the most recent and important progress in surface segregation of bimetallic nanoparticles and its impact in electrocatalysis are introduced. Typical segregation inducements and surface characterization techniques are discussed in detail. It is concluded that surface segregation is a critical issue when designing bimetallic catalysts. It is necessary to explore methods to control it and utilize it as a way towards producing robust, bimetallic electrocatalysts.

摘要

双金属纳米粒子是一类重要的电催化剂。它们表现出协同效应,这一效应严重依赖于表面组成,而表面组成决定了催化剂过程中反应物和中间产物的表面性质和吸附/脱附行为。通过表面偏析,纳米粒子会暴露于某些环境中,从而改变表面组成。从热力学角度来看,这是由于两种金属之间的表面能存在差异。这可能导致一种金属在表面富集,而另一种金属在核心富集。影响表面能的外部条件可能导致颗粒表面热力学稳定状态的变化,从而提供改变表面组成的机会。在这篇综述中,介绍了双金属纳米粒子表面偏析及其对电催化影响的最新和重要进展。详细讨论了典型的偏析诱导因素和表面表征技术。结论是,表面偏析是设计双金属催化剂时的一个关键问题。有必要探索控制它的方法,并将其用作制备稳健的双金属电催化剂的一种途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验