International School of Materials Science and Engineering (ISMSE), Nanostructure Research Centre, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Laboratory of Inorganic Materials Chemistry, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000, Namur, Belgium.
Nat Commun. 2023 Mar 18;14(1):1518. doi: 10.1038/s41467-023-37268-4.
The design of Pt-based nanoarchitectures with controllable compositions and morphologies is necessary to enhance their electrocatalytic activity. Herein, we report a rational design and synthesis of anisotropic mesoporous Pt@Pt-skin PtNi core-shell framework nanowires for high-efficient electrocatalysis. The catalyst has a uniform core-shell structure with an ultrathin atomic-jagged Pt nanowire core and a mesoporous Pt-skin PtNi framework shell, possessing high electrocatalytic activity, stability and Pt utilisation efficiency. For the oxygen reduction reaction, the anisotropic mesoporous Pt@Pt-skin PtNi core-shell framework nanowires demonstrated exceptional mass and specific activities of 6.69 A/mg and 8.42 mA/cm (at 0.9 V versus reversible hydrogen electrode), and the catalyst exhibited high stability with negligible activity decay after 50,000 cycles. The mesoporous Pt@Pt-skin PtNi core-shell framework nanowire configuration combines the advantages of three-dimensional open mesopore molecular accessibility and compressive Pt-skin surface strains, which results in more catalytically active sites and weakened chemisorption of oxygenated species, thus boosting its catalytic activity and stability towards electrocatalysis.
设计具有可控组成和形貌的 Pt 基纳米结构对于提高其电催化活性是必要的。在此,我们报告了一种合理设计和合成各向异性介孔 Pt@Pt-壳 PtNi 核壳框架纳米线的方法,用于高效电催化。该催化剂具有均匀的核壳结构,具有超薄原子锯齿状 Pt 纳米线核和介孔 Pt-壳 PtNi 框架壳,具有高电催化活性、稳定性和 Pt 利用率。对于氧还原反应,各向异性介孔 Pt@Pt-壳 PtNi 核壳框架纳米线表现出优异的质量和比活性,分别为 6.69 A/mg 和 8.42 mA/cm(相对于可逆氢电极 0.9 V),并且该催化剂在 50000 次循环后表现出高稳定性,活性衰减可忽略不计。介孔 Pt@Pt-壳 PtNi 核壳框架纳米线结构结合了三维开放介孔分子可及性和压缩 Pt-壳表面应变的优势,从而提供了更多的催化活性位点,并减弱了含氧物种的化学吸附,从而提高了其电催化的催化活性和稳定性。