Institute of NanoEngineering and MicroSystems, National Tsing Hua University , Hsinchu 30013, Taiwan.
Biomicrofluidics. 2015 Mar 23;9(2):022403. doi: 10.1063/1.4915613. eCollection 2015 Mar.
Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer-breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage-were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system.
介电击穿是数字微流控系统中的一个常见问题,限制了其在化学或生物医学应用中的应用。我们提出了一种使用低压化学气相沉积(LPCVD)沉积的 Si3N4 作为介电层的新型电润湿(EWOD)器件制造方法。这种材料具有比聚合物薄膜更高的相对介电常数、纯度、均匀性和生物相容性。这些特性还增加了介电层的击穿电压,并提高了 EWOD 系统在生物医学研究中的稳定性。以这种方式操纵具有小鼠胚胎的中等液滴。研究并比较了 Si3N4 介电层的电特性——击穿电压、折射率、相对介电常数以及与输入电压的接触角变化——与传统的等离子体增强化学气相沉积(PECVD)沉积的 Si3N4 介电层,以确认 LPCVD Si3N4 作为 EWOD 数字微流控系统介电层的应用潜力。