Suppr超能文献

使用低成本动作捕捉方法评估儿童的垂直跳跃发育水平。

Assessing vertical jump developmental levels in childhood using a low-cost motion capture approach.

作者信息

Sgrò Francesco, Nicolosi Simona, Schembri Rosaria, Pavone Marica, Lipoma Mario

机构信息

1 Faculty of Human and Social Sciences, University of Enna "Kore"

出版信息

Percept Mot Skills. 2015 Apr;120(2):642-58. doi: 10.2466/10.PMS.120v12x7. Epub 2015 Mar 31.

Abstract

Understanding the developmental levels of fundamental movement skills has a critical role in the improvement of motor competence in childhood. In this respect, the use of Microsoft Kinect to assess vertical jumping skill and to predict developmental levels in 9- to 12-yr.-old children was evaluated. 41 boys and girls repeated the countermovement jump test three times. Vertical jumping skill levels were categorized using observational records, while kinematic and temporal parameters were estimated using a biomechanical model based on data acquired by the Kinect. Multivariate analysis of variance (MANOVA) and discriminant analysis verified that the height of the jump and the flight height predict the primary differences in jumping skill developmental levels, and the Kinect-based assessment discriminates these levels.

摘要

了解基本运动技能的发展水平对提高儿童运动能力起着关键作用。在这方面,对使用微软Kinect评估9至12岁儿童的垂直跳跃技能和预测发展水平进行了评估。41名男孩和女孩重复进行了三次纵跳测试。垂直跳跃技能水平通过观察记录进行分类,而运动学和时间参数则基于Kinect获取的数据使用生物力学模型进行估计。多变量方差分析(MANOVA)和判别分析证实,跳跃高度和飞行高度可预测跳跃技能发展水平的主要差异,基于Kinect的评估能够区分这些水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验