Suppr超能文献

超越研究生入学考试(GRE):使用综合分数预测波多黎各学生在生物医学博士项目中的成功率。

Beyond the GRE: using a composite score to predict 
the success of Puerto Rican students in a biomedical 
PhD program.

作者信息

Pacheco Wendy I, Noel Richard J, Porter James T, Appleyard Caroline B

机构信息

*MBRS-RISE Program, , Ponce Health Sciences University and Ponce Research Institute, Ponce, PR 00732.

Department of Biochemistry, Ponce Health Sciences University and Ponce Research Institute, Ponce, PR 00732.

出版信息

CBE Life Sci Educ. 2015 Summer;14(2). doi: 10.1187/cbe.14-11-0216.

Abstract

The use and validity of the Graduate Record Examination General Test (GRE) to predict the success of graduate school applicants is heavily debated, especially for its possible impact on the selection of underrepresented minorities into science, technology, engineering, and math fields. To better identify candidates who would succeed in our program with less reliance on the GRE and grade point average (GPA), we developed and tested a composite score (CS) that incorporates additional measurable predictors of success to evaluate incoming applicants. Uniform numerical values were assigned to GPA, GRE, research experience, advanced course work or degrees, presentations, and publications. We compared the CS of our students with their achievement of program goals and graduate school outcomes. The average CS was significantly higher in those students completing the graduate program versus dropouts (p < 0.002) and correlated with success in competing for fellowships and a shorter time to thesis defense. In contrast, these outcomes were not predicted by GPA, science GPA, or GRE. Recent implementation of an impromptu writing assessment during the interview suggests the CS can be improved further. We conclude that the CS provides a broader quantitative measure that better predicts success of students in our program and allows improved evaluation and selection of the most promising candidates.

摘要

研究生入学考试通用测试(GRE)用于预测研究生申请者能否成功这一用途及其有效性饱受争议,尤其是其可能对少数族裔进入科学、技术、工程和数学领域的选拔产生的影响。为了在减少对GRE和平均绩点(GPA)依赖的情况下,更好地识别能在我们项目中取得成功的候选人,我们开发并测试了一种综合分数(CS),该分数纳入了其他可衡量的成功预测因素,以评估入学申请者。我们为GPA、GRE、研究经历、高级课程作业或学位、报告以及发表的论文赋予了统一的数值。我们将学生的综合分数与其在项目目标达成情况和研究生阶段成果进行了比较。完成研究生项目的学生的平均综合分数显著高于辍学者(p < 0.002),并且与获得奖学金的成功率以及缩短论文答辩时间相关。相比之下,GPA、理科GPA或GRE并不能预测这些结果。近期在面试过程中实施的即兴写作评估表明,综合分数还可以进一步改进。我们得出结论,综合分数提供了一种更广泛的量化衡量标准,能更好地预测学生在我们项目中的成功,并有助于改进对最有潜力候选人的评估和选拔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebad/4477729/aa63aef8fbcd/ar13fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验