Suppr超能文献

三相玻璃毛细管微流控装置中双乳液的破裂动力学。

Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.

机构信息

Offshore, Process and Energy Engineering Department, Cranfield University, Cranfield MK43 0AL, United Kingdom.

Offshore, Process and Energy Engineering Department, Cranfield University, Cranfield MK43 0AL, United Kingdom.

出版信息

J Colloid Interface Sci. 2015 Jul 15;450:279-287. doi: 10.1016/j.jcis.2015.03.032. Epub 2015 Mar 21.

Abstract

Pinch-off of a compound jet in 3D glass capillary microfluidic device, which combines co-flowing and countercurrent flow focusing geometries, was investigated using an incompressible three-phase axisymmetric Volume of Fluid-Continuum Surface Force (VOF-CSF) numerical model. The model showed good agreement with the experimental drop generation and was capable of predicting formation of core/shell droplets in dripping, narrowing jetting and widening jetting regimes. In dripping and widening jetting regimes, the presence of a vortex flow around the upstream end of the necking thread facilitates the jet break-up. No vortex flow was observed in narrowing jetting regime and pinch-off occurred due to higher velocity at the downstream end of the coaxial thread compared to that at the upstream end. In all regimes, the inner jet ruptured before the outer jet, preventing a leakage of the inner drop into the outer fluid. The necking region moves at the maximum speed in the narrowing jetting regime, due to the highest level of shear at the outer surface of the thread. However, in widening jetting regime, the neck travels the longest distance downstream before it breaks.

摘要

在 3D 玻璃毛细管微流控装置中,复合射流的夹断现象是通过使用不可压缩三相轴对称体积流-连续表面力(VOF-CSF)数值模型来研究的,该模型结合了共流和逆流聚焦几何形状。该模型与实验滴头生成具有良好的一致性,并且能够预测在滴状、射流变窄和射流变宽区域中形成核/壳液滴。在滴状和射流变宽区域中,颈部上游端周围的涡旋流有利于射流破裂。在射流变窄区域中没有观察到涡旋流,并且由于同轴螺纹下游端的速度高于上游端,因此发生了夹断。在所有区域中,内射流都在射流变窄区域中以最大速度破裂,这是由于螺纹外表面的剪切作用最强。然而,在射流变宽区域中,颈部在断裂之前在下游移动的距离最长。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验