Dick Alexej, Graf Laura, Olal Daniel, von der Malsburg Alexander, Gao Song, Kochs Georg, Daumke Oliver
From the Max-Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany.
the Institute of Virology, University Medical Center, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany, the Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany, and.
J Biol Chem. 2015 May 15;290(20):12779-92. doi: 10.1074/jbc.M115.650325. Epub 2015 Mar 31.
Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action.
黏液病毒抗性(Mx)GTP酶由干扰素诱导产生,并能抑制多种病毒,包括流感病毒和人类免疫缺陷病毒。它们具有发动蛋白相关蛋白的典型结构域架构,带有一个N端GTP酶(G)结构域、一个束状信号元件以及一个负责自我组装和效应功能的C端柄部。人MxA(也称为MX1)在细胞质中表达,部分与滑面内质网的膜相关联。它的GTP酶活性呈现出蛋白质浓度依赖性增加,表明通过G结构域二聚化来调节GTP水解。在此,我们对MxA中的一组G结构域突变体进行了表征,以阐明GTP结合的作用以及G结构域界面对于MxA的催化和抗病毒功能的重要性。MxA催化中心的残基以及核苷酸本身对于G结构域二聚化和催化激活至关重要。在下拉实验中,MxA独立于核苷酸结合识别托高托病毒核衣壳蛋白。然而,针对托高托病毒、流感病毒和拉克罗斯病毒的抗病毒活性需要核苷酸结合和水解。我们进一步证明,GTP结合促进了与内质网膜相关的稳定MxA组装体的形成,而核苷酸水解则促进了MxA从细胞膜向病毒靶点的动态重新分布。我们的研究突出了核苷酸结合和水解在MxA抗病毒作用过程中对其细胞内动态变化的作用。