Institute for Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability, University of Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany.
Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
Life (Basel). 2015 Mar 30;5(2):1204-17. doi: 10.3390/life5021204.
We simulate pH-dependent growth of cyanobacteria with an ecosystem model for the central Baltic Sea. Four model components-a life cycle model of cyanobacteria, a biogeochemical model, a carbonate chemistry model and a water column model-are coupled via the framework for aquatic biogeochemical models. The coupled model is forced by the output of a regional climate model, based on the A1B emission scenario. With this coupled model, we perform simulations for the period 1968-2098. Our simulation experiments suggest that in the future, cyanobacteria growth is hardly affected by the projected pH decrease. However, in the simulation phase prior to 1980, cyanobacteria growth and N2-fixation are limited by the relatively high pH. The observed absence of cyanobacteria before the 1960s may thus be explained not only by lower eutrophication levels, but also by a higher alkalinity.
我们使用一个针对中波罗的海的生态系统模型来模拟 pH 值依赖性的蓝藻生长。四个模型组件——蓝藻的生命周期模型、生物地球化学模型、碳酸盐化学模型和水柱模型——通过水生生物地球化学模型框架进行耦合。该耦合模型由基于 A1B 排放情景的区域气候模型输出驱动。利用该耦合模型,我们对 1968 年至 2098 年期间进行了模拟。我们的模拟实验表明,在未来,预计的 pH 值下降几乎不会影响蓝藻的生长。然而,在 1980 年之前的模拟阶段,蓝藻的生长和 N2 固定受到相对较高 pH 值的限制。因此,在 20 世纪 60 年代之前蓝藻不存在的现象,不仅可以用较低的富营养化水平来解释,也可以用较高的碱度来解释。