Suppr超能文献

一氧化碳作为极端嗜盐微生物的代谢能量来源:对火星风化层中微生物活动的影响。

Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith.

作者信息

King Gary M

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4465-70. doi: 10.1073/pnas.1424989112. Epub 2015 Mar 23.

Abstract

Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.

摘要

一氧化碳在火星大气中的浓度相对较高(≥800 ppm),它是一种潜在的重要能源,可能为局部假定的地表或近地表微生物群的新陈代谢提供能量。然而,在与火星过去或现在相关的条件下,一氧化碳氧化的合理性尚未得到评估。据我们所知,来自各种陆地盐水和盐渍土壤的结果首次记录了在火星反复出现的斜坡纹线(RSL)处假定盐水中可能出现的水势(-41 MPa至-117 MPa)下的活性一氧化碳吸收情况。来自两种极端嗜盐菌株的结果补充了实地观察。从犹他州邦纳维尔盐滩分离出的嗜盐栖嗜盐碱杆菌属菌株BV1(据我们所知,这是首次记录的广古菌门中极端嗜盐的一氧化碳氧化成员),在水势为-39.6 MPa的盐饱和培养基中消耗一氧化碳;相对于其最佳水势-11 MPa时的活性,活性仅降低了28%。从加利福尼亚州高盐度的莫诺湖分离出的一株变形菌,埃氏碱湖嗜盐菌MLHE-1,在低水势(-19 MPa)、RSL报道的温度范围内以及有氧、低氧(0.2%氧气)和无氧条件(无氧且含硝酸盐)下也能氧化一氧化碳。MLHE-1不受高氯酸镁或低气压(10毫巴)的影响。这些结果共同证明了在当代火星局部尺度(如RSL)以及火星历史早期更大空间尺度上可能存在的条件下,微生物进行一氧化碳氧化的可能性。

相似文献

1
Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4465-70. doi: 10.1073/pnas.1424989112. Epub 2015 Mar 23.
2
Perchlorate-Coupled Carbon Monoxide (CO) Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines.
Front Microbiol. 2017 Dec 22;8:2571. doi: 10.3389/fmicb.2017.02571. eCollection 2017.
4
A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H as Potential Antibiosignatures.
Astrobiology. 2019 May;19(5):655-668. doi: 10.1089/ast.2018.1835. Epub 2019 Apr 5.
5
Atmospheric energy for subsurface life on Mars?
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1395-9. doi: 10.1073/pnas.030538097.
7
Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):666-71. doi: 10.1073/pnas.1209793110. Epub 2012 Dec 24.
8
Brines in seepage channels as eluants for subsurface relict biomolecules on Mars?
Astrobiology. 2001 Summer;1(2):165-84. doi: 10.1089/153110701753198936.
9
Mars' volatile and climate history.
Nature. 2001 Jul 12;412(6843):237-44. doi: 10.1038/35084184.
10
Remains Viable and Shows Morphological Changes under Anoxic (CO-Enriched) and Hypobaric (2.4 kPa) Atmospheric Conditions.
Astrobiology. 2022 Jul;22(7):829-837. doi: 10.1089/ast.2021.0076. Epub 2022 Mar 22.

引用本文的文献

1
Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.
Nat Chem Biol. 2025 Jan 29. doi: 10.1038/s41589-025-01836-0.
4
Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures.
Nat Commun. 2024 Apr 15;15(1):3219. doi: 10.1038/s41467-024-47324-2.
6
Microbial diversity in polyextreme salt flats and their potential applications.
Environ Sci Pollut Res Int. 2024 Feb;31(8):11371-11405. doi: 10.1007/s11356-023-31644-9. Epub 2024 Jan 5.
8
Metabolic Potential of Microbial Communities in the Hypersaline Sediments of the Bonneville Salt Flats.
mSystems. 2022 Dec 20;7(6):e0084622. doi: 10.1128/msystems.00846-22. Epub 2022 Nov 15.
9
The archaeal class and astrobiology: Knowledge gaps and research opportunities.
Front Microbiol. 2022 Oct 13;13:1023625. doi: 10.3389/fmicb.2022.1023625. eCollection 2022.
10
Functional basis of primary succession: Traits of the pioneer microbes.
Environ Microbiol. 2023 Jan;25(1):171-176. doi: 10.1111/1462-2920.16266. Epub 2022 Nov 18.

本文引用的文献

1
Experimental evidence for the formation of liquid saline water on Mars.
Geophys Res Lett. 2014 Jul 16;41(13):4456-4462. doi: 10.1002/grl.51829. Epub 2014 Jul 7.
3
Ancient aqueous environments at Endeavour crater, Mars.
Science. 2014 Jan 24;343(6169):1248097. doi: 10.1126/science.1248097.
4
Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars.
Science. 2014 Jan 24;343(6169):1245267. doi: 10.1126/science.1245267. Epub 2013 Dec 9.
5
Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.
Science. 2014 Jan 24;343(6169):1244734. doi: 10.1126/science.1244734. Epub 2013 Dec 9.
6
A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.
Science. 2014 Jan 24;343(6169):1242777. doi: 10.1126/science.1242777. Epub 2013 Dec 9.
7
Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars.
Extremophiles. 2014 Jan;18(1):75-80. doi: 10.1007/s00792-013-0594-9. Epub 2013 Oct 23.
8
High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16939-44. doi: 10.1073/pnas.1307090110. Epub 2013 Sep 30.
9
Soil diversity and hydration as observed by ChemCam at Gale crater, Mars.
Science. 2013 Sep 27;341(6153):1238670. doi: 10.1126/science.1238670.
10
Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover.
Science. 2013 Jul 19;341(6143):263-6. doi: 10.1126/science.1237966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验