Sturm Angelika, Mollard Vanessa, Cozijnsen Anton, Goodman Christopher D, McFadden Geoffrey I
Plant Cell Biology Research Centre, School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
Plant Cell Biology Research Centre, School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10216-23. doi: 10.1073/pnas.1423959112. Epub 2015 Mar 23.
Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase β subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the β subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the β subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the β subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase β subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control.
线粒体ATP合酶由糖酵解产生的丙酮酸的化学渗透氧化驱动。血液期疟原虫避开化学渗透作用,几乎完全依赖糖酵解来产生ATP,这就引发了一个问题,即在疟原虫生命周期的血液期线粒体ATP合酶是否必要。我们敲除了啮齿动物疟原虫伯氏疟原虫中的线粒体ATP合酶β亚基基因,使将ADP转化为ATP的蛋白质失活。ATP合酶β亚基基因的破坏仅略微降低了无性血液期疟原虫的生长,但完全阻断了通过斯氏按蚊在小鼠之间的传播。缺乏ATP合酶β亚基基因的疟原虫产生了可存活的配子,这些配子融合并形成动合子,但无法超越这一阶段。缺乏ATP合酶β亚基基因的动合子具有正常的运动能力,但在蚊子中肠中无法存活,也从未形成卵囊或子孢子,从而消除了通过蚊虫叮咬向未感染小鼠的传播。我们将自身不育的ATP合酶β亚基敲除疟原虫与雄性缺陷、自身不育的伯氏疟原虫品系杂交,恢复了生育能力以及卵囊和子孢子的产生,这表明线粒体ATP合酶对于伯氏疟原虫通过携带线粒体的雌性有性生殖系维持生存能力至关重要。ATP合酶的扰动完全阻断了向蚊媒的传播,有可能成为疾病控制的靶点。