Suppr超能文献

疟原虫恶性疟原虫有性和无性血阶段的线粒体代谢。

Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum.

机构信息

Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC 3010, Australia.

出版信息

BMC Biol. 2013 Jun 13;11:67. doi: 10.1186/1741-7007-11-67.

Abstract

BACKGROUND

The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved.

RESULTS

We reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death.

CONCLUSIONS

Our metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.

摘要

背景

疟原虫(Plasmodium falciparum)的血期,包括快速分裂的无性阶段和非分裂的配子体,其碳代谢被认为是高度简化的,糖酵解提供了细胞内大部分的 ATP。然而,这些寄生虫阶段表达了经典线粒体三羧酸(TCA)循环所需的所有酶,最近有人提出,它们可能通过非典型的分支 TCA 循环分解谷氨酰胺。这些阶段是否在 TCA 循环中分解葡萄糖,以及线粒体代谢的功能意义是什么,目前仍未解决。

结果

我们通过用 13C-葡萄糖和 13C-谷氨酰胺代谢标记每个阶段,并用质谱法分析关键途径中的同位素丰度,重新评估了疟原虫无性和有性血期的中心碳代谢。与之前的发现相反,我们发现来自葡萄糖和谷氨酰胺的碳骨架都在无性和有性血期的经典氧化 TCA 循环中被分解。在无性血期,葡萄糖碳骨架进入 TCA 循环的通量很低,主要由谷氨酰胺提供,但在配子体阶段急剧增加。配子体 TCA 循环中葡萄糖分解代谢的增加与葡萄糖摄取的增加有关,这表明该阶段的能量需求很高。值得注意的是,虽然 TCA 循环的化学抑制对无性阶段的生长或生存几乎没有影响,但配子体 TCA 循环的抑制导致发育停滞和死亡。

结论

我们的代谢组学方法使我们能够修正疟原虫碳代谢的现行模型。特别是,我们发现无性和有性血期都利用常规 TCA 循环来分解葡萄糖和谷氨酰胺。配子体分化与中央碳代谢的程序性重塑有关,这可能是寄生虫在被蚊子媒介摄取前后生存所必需的。配子体阶段对 TCA 循环抑制剂的敏感性增加为阻断传播药物提供了一个潜在的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd5/3704724/68362d968139/1741-7007-11-67-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验