Petelczyc M, Żebrowski J J, Orłowska-Baranowska E
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland.
Chaos. 2015 Mar;25(3):033115. doi: 10.1063/1.4914547.
Extraction of stochastic and deterministic components from empirical data-necessary for the reconstruction of the dynamics of the system-is discussed. We determine both components using the Kramers-Moyal expansion. In our earlier papers, we obtained large fluctuations in the magnitude of both terms for rare or extreme valued events in the data. Calculations for such events are burdened by an unsatisfactory quality of the statistics. In general, the method is sensitive to the binning procedure applied for the construction of histograms. Instead of the commonly used constant width of bins, we use here a constant number of counts for each bin. This approach-the fixed mass method-allows to include in the calculation events, which do not yield satisfactory statistics in the fixed bin width method. The method developed is general. To demonstrate its properties, here, we present the modified Kramers-Moyal expansion method and discuss its properties by the application of the fixed mass method to four representative heart rate variability recordings with different numbers of ectopic beats. These beats may be rare events as well as outlying, i.e., very small or very large heart cycle lengths. The properties of ectopic beats are important not only for medical diagnostic purposes but the occurrence of ectopic beats is a general example of the kind of variability that occurs in a signal with outliers. To show that the method is general, we also present results for two examples of data from very different areas of science: daily temperatures at a large European city and recordings of traffics on a highway. Using the fixed mass method, to assess the dynamics leading to the outlying events we studied the occurrence of higher order terms of the Kramers-Moyal expansion in the recordings. We found that the higher order terms of the Kramers-Moyal expansion are negligible for heart rate variability. This finding opens the possibility of the application of the Langevin equation to the whole range of empirical signals containing rare or outlying events. Note, however, that the higher order terms are non-negligible for the other data studied here and for it the Langevin equation is not applicable as a model.
讨论了从经验数据中提取随机和确定性成分的问题,这对于重建系统动力学是必要的。我们使用克莱默斯-莫亚尔展开来确定这两个成分。在我们早期的论文中,对于数据中的罕见或极值事件,我们得到了这两项大小的大幅波动。此类事件的计算受到统计质量不理想的困扰。一般来说,该方法对用于构建直方图的分箱过程很敏感。这里我们不是使用常用的固定宽度分箱,而是对每个分箱使用固定数量的计数。这种方法——固定质量法——允许在计算中纳入那些在固定分箱宽度法中统计结果不理想的事件。所开发的方法具有通用性。为了展示其特性,在此我们介绍改进的克莱默斯-莫亚尔展开方法,并通过将固定质量法应用于四个具有不同数量异位搏动的代表性心率变异性记录来讨论其特性。这些搏动可能是罕见事件,也可能是异常值,即非常短或非常长的心动周期长度。异位搏动的特性不仅对于医学诊断目的很重要,而且异位搏动的出现是信号中存在异常值时发生的那种变异性的一个普遍例子。为了表明该方法具有通用性,我们还给出了来自非常不同科学领域的两个数据示例的结果:欧洲一个大城市的每日气温和一条高速公路上的交通流量记录。使用固定质量法,为了评估导致异常事件的动力学,我们研究了记录中克莱默斯-莫亚尔展开高阶项的出现情况。我们发现,对于心率变异性,克莱默斯-莫亚尔展开的高阶项可以忽略不计。这一发现为将朗之万方程应用于包含罕见或异常事件的整个经验信号范围开辟了可能性。然而,请注意,对于这里研究的其他数据,高阶项不可忽略,因此朗之万方程不适用于作为其模型。