Petelczyc M, Zebrowski J J, Baranowski R
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031127. doi: 10.1103/PhysRevE.80.031127. Epub 2009 Sep 18.
Modeling of recorded time series may be used as a method of analysis for heart rate variability studies. In particular, the extraction of the first two Kramers-Moyal coefficients has been used in this context. Recently, the method was applied to a wide range of signal analysis: from financial data to physiological and biological time series. Modeling of the signal is important for the prediction and interpretation of the dynamics underlying the process. The method requires the determination of the Markov time. Obtaining the drift and diffusion term of the Kramers-Moyal expansion is crucial for the modeling of the original time series with the Langevin equation. Both Tabar [Comput. Sci. Eng. 8, 54 (2006)] and T. Kuusela [Phys. Rev. E 69, 031916 (2004)] suggested that these terms may be used to distinguish healthy subjects from those with heart failure. The research groups applied a somewhat different methodology and obtained substantially different ranges of the Markov time. We show that the two studies may be considered consistent with each other as Kuusela analyzed 24 h recordings while Tabar analyzed daytime and nighttime recordings, separately. However, both groups suggested using the Langevin equation for modeling of time series which requires the fluctuation force to be a Gaussian. We analyzed heart rate variability recordings for ten young male (age 26-4+3 y ) healthy subjects. 24 h recordings were analyzed and 6-h-long daytime and nighttime fragments were selected. Similar properties of the data were observed in all recordings but all the nighttime data and seven of the ten 24 h series exhibited higher-order, non-negligible Kramers-Moyal coefficients. In such a case, the reconstruction of the time series using the Langevin equation is impossible. The non-negligible higher-order coefficients are due to autocorrelation in the data. This effect may be interpreted as a result of a physiological phenomenon (especially occurring for nighttime data): respiratory sinus arrhythmia (RSA). We detrended the nighttime recordings for the healthy subjects and obtained an asymmetry in the dependence of the diffusion term on the rescaled heart rate. This asymmetry seems to be an effect of different time scales during the inspiration and the expiration phase of breathing. The asymmetry was significantly decreased in the diffusion term found for detrended nighttime recordings obtained from five hypertrophic cardiomyopathy (HCM) patients. We conclude that the effect of RSA is decreased in the heart rate variability of HCM patients-a result which may contribute to a better medical diagnosis by supplying a new quantitative measure of RSA.
记录时间序列的建模可作为心率变异性研究的一种分析方法。特别是,前两个克莱默斯 - 莫亚尔系数的提取已在此背景下得到应用。最近,该方法被应用于广泛的信号分析:从金融数据到生理和生物时间序列。信号建模对于预测和解释过程背后的动力学很重要。该方法需要确定马尔可夫时间。获得克莱默斯 - 莫亚尔展开式的漂移项和扩散项对于用朗之万方程对原始时间序列进行建模至关重要。塔巴尔[《计算机科学与工程》8, 54 (2006)]和T. 库塞拉[《物理评论E》69, 031916 (2004)]都表明,这些项可用于区分健康受试者和心力衰竭患者。这两个研究小组采用了略有不同的方法,并且获得了实质上不同的马尔可夫时间范围。我们表明,这两项研究可以被认为是相互一致的,因为库塞拉分析了24小时的记录,而塔巴尔分别分析了白天和夜间的记录。然而,两个小组都建议使用朗之万方程对时间序列进行建模,这要求涨落力是高斯分布的。我们分析了十名年轻男性(年龄26 - 4 + 3岁)健康受试者的心率变异性记录。对24小时的记录进行了分析,并选择了6小时长的白天和夜间片段。在所有记录中都观察到了数据的相似特性,但所有夜间数据以及十个24小时序列中的七个都表现出高阶的、不可忽略的克莱默斯 - 莫亚尔系数。在这种情况下,使用朗之万方程重建时间序列是不可能的。不可忽略的高阶系数是由于数据中的自相关。这种效应可以被解释为一种生理现象(特别是在夜间数据中出现)的结果:呼吸性窦性心律失常(RSA)。我们对健康受试者的夜间记录进行了去趋势处理,并在扩散项对重新缩放的心率的依赖性中获得了不对称性。这种不对称性似乎是呼吸吸气和呼气阶段不同时间尺度的一种效应。在从五名肥厚型心肌病(HCM)患者获得的去趋势夜间记录中发现的扩散项中,这种不对称性显著降低。我们得出结论,肥厚型心肌病患者心率变异性中呼吸性窦性心律失常的效应降低了——这一结果可能通过提供一种新的呼吸性窦性心律失常定量测量方法有助于更好的医学诊断。