Department of Materials Engineering, Indian Institute of Science, Bangalore, India 560012.
Nanoscale. 2015 May 7;7(17):7704-16. doi: 10.1039/c5nr00574d.
Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.
纳米结构金属是一类有前途的生物材料,可应用于骨科领域,以提高机械性能和生物响应,从而延长生物医学植入物的使用寿命。表面机械研磨处理(SMAT)是在金属基底上工程纳米晶表面的有效方法。在这项工作中,316L 不锈钢(SS),一种广泛应用于矫形的生物材料,经过 SMAT 处理后生成了纳米晶表面。表面纳米化改变了存在于表面的氧化层的性质。它使在盐水中的腐蚀疲劳强度提高了 50%。这种强度的增加归因于更厚的氧化层、残余压应力、表面层的高强度和纳米晶层中晶间腐蚀的倾向较低。纳米化还增强了成骨细胞的附着和增殖。有趣的是,润湿性和表面粗糙度,这两个广泛被认为是控制细胞反应的关键参数,在纳米化后保持不变。观察到的细胞行为可以用存在于 316L SS 表面的半导体钝化氧化物膜的电子性质变化来解释。纳米化可能会增加 n 型氧化物膜的载流子密度,从而防止吸附细胞黏附蛋白(如纤维连接蛋白)的变性。此外,在原本中性的氧化物层上产生了净正电荷,这已知有利于细胞黏附。因此,本工作强调了金属基底上氧化物膜电子性质变化的作用。这项研究展示了通过 SMAT 进行纳米晶表面改性在处理用于矫形植入物的金属生物材料方面的优势。