†Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany.
ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8099-107. doi: 10.1021/acsami.5b00711. Epub 2015 Apr 10.
Photoactive reaction centers (RCs) are protein complexes in bacteria able to convert sunlight into other forms of energy with a high quantum yield. The photostimulation of immobilized RCs on inorganic electrodes result in the generation of photocurrent that is of interest for biosolar cell applications. This paper reports on the use of novel electrodes based on functional conductive nanocrystalline diamond onto which bacterial RCs are immobilized. A three-dimensional conductive polymer scaffold grafted to the diamond electrodes enables efficient entrapment of photoreactive proteins. The electron transfer in these functional diamond electrodes is optimized through the use of a ferrocene-based electron mediator, which provides significant advantages such as a rapid electron transfer as well as high generated photocurrent. A detailed discussion of the generated photocurrent as a function of time, bias voltage, and mediators in solution unveils the mechanisms limiting the electron transfer in these functional electrodes. This work featuring diamond-based electrodes in biophotovoltaics offers general guidelines that can serve to improve the performance of similar devices based on different materials and geometries.
光活性反应中心(RCs)是细菌中的蛋白质复合物,能够将阳光转化为其他形式的能量,具有高量子产率。固定在无机电极上的 RC 的光刺激导致光电流的产生,这对于生物太阳能电池应用很有意义。本文报告了使用基于功能化导电纳米金刚石的新型电极,细菌 RCs 被固定在这些电极上。接枝到金刚石电极上的三维导电聚合物支架能够有效地捕获光反应蛋白。通过使用基于二茂铁的电子介体来优化这些功能化金刚石电极中的电子转移,这提供了显著的优势,例如快速的电子转移和高产生的光电流。详细讨论了作为时间、偏置电压和溶液中介体函数的产生光电流,揭示了限制这些功能电极中电子转移的机制。这项基于金刚石电极的生物光伏工作提供了一般性指导原则,可用于改善基于不同材料和几何形状的类似器件的性能。