Suppr超能文献

小动物呼吸门控CT中PICCS算法的不同稀疏变换研究。

Investigation of different sparsity transforms for the PICCS algorithm in small-animal respiratory gated CT.

作者信息

Abascal Juan F P J, Abella Monica, Sisniega Alejandro, Vaquero Juan Jose, Desco Manuel

机构信息

Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.

Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.

出版信息

PLoS One. 2015 Apr 2;10(3):e0120140. doi: 10.1371/journal.pone.0120140. eCollection 2015.

Abstract

Respiratory gating helps to overcome the problem of breathing motion in cardiothoracic small-animal imaging by acquiring multiple images for each projection angle and then assigning projections to different phases. When this approach is used with a dose similar to that of a static acquisition, a low number of noisy projections are available for the reconstruction of each respiratory phase, thus leading to streak artifacts in the reconstructed images. This problem can be alleviated using a prior image constrained compressed sensing (PICCS) algorithm, which enables accurate reconstruction of highly undersampled data when a prior image is available. We compared variants of the PICCS algorithm with different transforms in the prior penalty function: gradient, unitary, and wavelet transform. In all cases the problem was solved using the Split Bregman approach, which is efficient for convex constrained optimization. The algorithms were evaluated using simulations generated from data previously acquired on a micro-CT scanner following a high-dose protocol (four times the dose of a standard static protocol). The resulting data were used to simulate scenarios with different dose levels and numbers of projections. All compressed sensing methods performed very similarly in terms of noise, spatiotemporal resolution, and streak reduction, and filtered back-projection was greatly improved. Nevertheless, the wavelet domain was found to be less prone to patchy cartoon-like artifacts than the commonly used gradient domain.

摘要

呼吸门控通过为每个投影角度采集多个图像,然后将投影分配到不同阶段,有助于克服心胸小动物成像中呼吸运动的问题。当以与静态采集相似的剂量使用这种方法时,每个呼吸阶段的重建可获得的噪声投影数量较少,从而导致重建图像中出现条纹伪影。使用先验图像约束压缩感知(PICCS)算法可以缓解这个问题,当有先验图像时,该算法能够准确重建高度欠采样的数据。我们比较了在先前惩罚函数中使用不同变换的PICCS算法变体:梯度变换、酉变换和小波变换。在所有情况下,都使用分裂Bregman方法解决问题,该方法对于凸约束优化是有效的。使用根据先前在微型CT扫描仪上按照高剂量方案(标准静态方案剂量的四倍)采集的数据生成的模拟来评估算法。所得数据用于模拟不同剂量水平和投影数量的场景。在噪声、时空分辨率和条纹减少方面,所有压缩感知方法的表现非常相似,并且滤波反投影有了很大改进。然而,发现小波域比常用的梯度域更不容易出现斑驳的卡通样伪影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0e8/4383608/6b19c637853e/pone.0120140.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验