Zapata Mario, Camacho Beltrán Ángela S, Borisov Andrei G, Aizpurua Javier
Opt Express. 2015 Mar 23;23(6):8134-49. doi: 10.1364/OE.23.008134.
Electron tunneling through narrow gaps between metal nanoparticles can strongly affect the plasmonic response of the hybrid nanostructure. Although quantum mechanical in nature, this effect can be properly taken into account within a classical framework of Maxwell equations using the so-called Quantum Corrected Model (QCM). We extend previous studies on spherical cluster and cylindrical nanowire dimers where the tunneling current occurs in the extremely localized gap regions, and perform quantum mechanical time dependent density functional theory (TDDFT) calculations of the plasmonic response of cylindrical core-shell nanoparticles (nanomatryushkas). In this axially symmetric situation, the tunneling region extends over the entire gap between the metal core and the metallic shell. For core-shell separations below 0.5 nm, the standard classical calculations fail to describe the plasmonic response of the cylindrical nanomatryushka, while the QCM can reproduce the quantum results. Using the QCM we also retrieve the quantum results for the absorption cross section of the spherical nanomatryushka calculated by V. Kulkarni et al. [Nano Lett. 13, 5873 (2013)]. The comparison between the model and the full quantum calculations establishes the applicability of the QCM for a wider range of geometries that hold tunneling gaps.
电子隧穿金属纳米颗粒之间的狭窄间隙会强烈影响混合纳米结构的等离子体响应。尽管这种效应本质上是量子力学的,但在麦克斯韦方程的经典框架内,使用所谓的量子修正模型(QCM)可以恰当地考虑这种效应。我们扩展了之前对球形团簇和圆柱形纳米线二聚体的研究,在这些研究中,隧穿电流发生在极其局部化的间隙区域,并对圆柱形核壳纳米颗粒(纳米套娃)的等离子体响应进行了量子力学含时密度泛函理论(TDDFT)计算。在这种轴对称情况下,隧穿区域延伸到金属核与金属壳之间的整个间隙。对于核壳间距小于0.5纳米的情况,标准的经典计算无法描述圆柱形纳米套娃的等离子体响应,而QCM可以重现量子结果。使用QCM,我们还得到了V. Kulkarni等人[《纳米快报》13, 5873 (2013)]计算的球形纳米套娃吸收截面的量子结果。该模型与全量子计算之间的比较确定了QCM在更广泛的具有隧穿间隙几何结构中的适用性。