Suppr超能文献

观测两个等离子体纳米粒子之间的量子隧穿。

Observation of quantum tunneling between two plasmonic nanoparticles.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Nano Lett. 2013 Feb 13;13(2):564-9. doi: 10.1021/nl304078v. Epub 2013 Jan 14.

Abstract

The plasmon resonances of two closely spaced metallic particles have enabled applications including single-molecule sensing and spectroscopy, novel nanoantennas, molecular rulers, and nonlinear optical devices. In a classical electrodynamic context, the strength of such dimer plasmon resonances increases monotonically as the particle gap size decreases. In contrast, a quantum mechanical framework predicts that electron tunneling will strongly diminish the dimer plasmon strength for subnanometer-scale separations. Here, we directly observe the plasmon resonances of coupled metallic nanoparticles as their gap size is reduced to atomic dimensions. Using the electron beam of a scanning transmission electron microscope (STEM), we manipulate pairs of ~10-nm-diameter spherical silver nanoparticles on a substrate, controlling their convergence and eventual coalescence into a single nanosphere. We simultaneously employ electron energy-loss spectroscopy (EELS) to observe the dynamic plasmonic properties of these dimers before and after particle contact. As separations are reduced from 7 nm, the dominant dipolar peak exhibits a redshift consistent with classical calculations. However, gaps smaller than ~0.5 nm cause this mode to exhibit a reduced intensity consistent with quantum theories that incorporate electron tunneling. As the particles overlap, the bonding dipolar mode disappears and is replaced by a dipolar charge transfer mode. Our dynamic imaging, manipulation, and spectroscopy of nanostructures enables the first full spectral mapping of dimer plasmon evolution and may provide new avenues for in situ nanoassembly and analysis in the quantum regime.

摘要

两个紧密间隔的金属粒子的等离子体共振使一些应用成为可能,包括单分子传感和光谱学、新型纳米天线、分子尺子和非线性光学器件。在经典的电动力学背景下,随着粒子间隙尺寸的减小,这种二聚体等离子体共振的强度单调增加。相比之下,量子力学框架预测,对于亚纳米尺度的分离,电子隧穿将强烈削弱二聚体等离子体的强度。在这里,我们直接观察到耦合金属纳米粒子的等离子体共振,因为它们的间隙尺寸减小到原子尺寸。我们使用扫描透射电子显微镜 (STEM) 的电子束操纵基底上的一对约 10nm 直径的球形银纳米粒子,控制它们的收敛和最终合并成一个单纳米球。我们同时采用电子能量损失光谱 (EELS) 来观察这些二聚体在粒子接触前后的动态等离子体特性。当分离从 7nm 减小时,主导的偶极峰表现出与经典计算一致的红移。然而,小于~0.5nm 的间隙导致该模式的强度降低,这与包含电子隧穿的量子理论一致。当粒子重叠时,键合偶极模式消失,取而代之的是偶极电荷转移模式。我们对纳米结构的动态成像、操纵和光谱学使二聚体等离子体演化的全光谱映射成为可能,并可能为原位量子态下的纳米组装和分析提供新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验