Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, England.
Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
Phys Rev Lett. 2015 Mar 20;114(11):115701. doi: 10.1103/PhysRevLett.114.115701.
We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds between neighboring sites are successively broken. Modeling such structures by configurations of a generalized Potts or random-cluster model allows us to discuss a wide range of systems with fractal properties including trees as well as dense clusters. We present exact results for the densities of fragmenting edges and the distribution of fragment sizes for critical clusters in two dimensions. Dynamical fragmentation with a size cutoff leads to broad distributions of fragment sizes. The resulting power laws are shown to encode characteristic fingerprints of the fragmented objects.
我们分析了在相邻位置之间的键相继断裂的过程中,晶格上随机团簇的碎裂行为。通过广义 Potts 模型或随机团簇模型的构型对这些结构进行建模,使我们能够讨论包括树和密集团簇在内的具有分形性质的广泛系统。我们给出了二维临界团簇中碎裂边缘的密度和碎片大小分布的精确结果。带有尺寸截止的动力学碎裂导致碎片尺寸的分布很宽。所得到的幂律显示出碎片化物体的特征指纹。