Lewis Ashley G, Bastiaansen Marcel
Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Nijmegen, The Netherlands.
Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Academy for Leisure, NHTV University of Applied Sciences, Breda, The Netherlands.
Cortex. 2015 Jul;68:155-68. doi: 10.1016/j.cortex.2015.02.014. Epub 2015 Mar 4.
There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally.
有越来越多的文献研究使用脑电图(EEG)和/或脑磁图(MEG)测量的振荡神经动力学与句子层面语言理解之间的关系。最近的研究表明,大脑中信息分层流动的预测编码模型与β和γ频段的振荡神经动力学之间存在紧密联系。我们认为,将β和γ振荡与句子层面语言理解相关的研究结果,可能在这样一个预测编码模型下得到统一。我们的观点是,β频段的振荡活动可能既反映了负责表征正在构建的句子层面意义的当前网络配置的主动维持,也反映了基于该表征将预测自上而下传播到层次较低的处理水平。此外,我们认为低γ和中γ频段的振荡活动反映了自上而下的预测与自下而上的语言输入的匹配,而诱发的高γ可能反映了自下而上的预测误差向处理层次结构中更高水平的传播。我们还讨论了这个预测编码框架的一些含义,并概述了如何通过实验对其进行测试的想法。