Suppr超能文献

贝叶斯视角下的量级估计。

A Bayesian perspective on magnitude estimation.

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich & ETH Zürich, Switzerland.

Center for Sensorimotor Research and Department of Neurology, Ludwig-Maximilian University Munich, Munich, Germany; German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilian University Munich, Munich, Germany; Bernstein Center for Computational Neuroscience, Ludwig-Maximilian University Munich, Munich, Germany.

出版信息

Trends Cogn Sci. 2015 May;19(5):285-93. doi: 10.1016/j.tics.2015.03.002. Epub 2015 Apr 2.

Abstract

Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia.

摘要

我们对物理世界的表示需要对大小进行判断,例如响度、距离或时间。有趣的是,大小估计通常不是真实的,而是受到特征性偏差的影响。这些偏差在不同的感觉模式中非常相似,表明不同的感觉系统共享共同的处理机制。然而,寻找普遍的神经生物学大小判断原则需要通过形式理论来指导。在这里,我们讨论了一个用于理解大小估计偏差的统一贝叶斯框架。这种贝叶斯观点使一系列已建立的心理物理发现得到重新解释,调和了关于大小估计的看似不兼容的经典观点,并能指导未来对健康和精神疾病(如精神分裂症)中的大小估计及其神经生物学机制的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验