Suppr超能文献

一种统一理论解释了看似矛盾的感知估计偏差。

A unifying theory explains seemingly contradictory biases in perceptual estimation.

机构信息

Saarland University, Saarbrücken, Germany.

Department of Neuroscience, Department of Psychology, Center for Perceptual Systems, Center for Learning and Memory, Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, TX, USA.

出版信息

Nat Neurosci. 2024 Apr;27(4):793-804. doi: 10.1038/s41593-024-01574-x. Epub 2024 Feb 15.

Abstract

Perceptual biases are widely regarded as offering a window into the neural computations underlying perception. To understand these biases, previous work has proposed a number of conceptually different, and even seemingly contradictory, explanations, including attraction to a Bayesian prior, repulsion from the prior due to efficient coding and central tendency effects on a bounded range. We present a unifying Bayesian theory of biases in perceptual estimation derived from first principles. We demonstrate theoretically an additive decomposition of perceptual biases into attraction to a prior, repulsion away from regions with high encoding precision and regression away from the boundary. The results reveal a simple and universal rule for predicting the direction of perceptual biases. Our theory accounts for, and yields, new insights regarding biases in the perception of a variety of stimulus attributes, including orientation, color and magnitude. These results provide important constraints on the neural implementations of Bayesian computations.

摘要

感知偏差被广泛认为为理解感知背后的神经计算提供了一个窗口。为了理解这些偏差,先前的工作提出了许多概念上不同的、甚至看似矛盾的解释,包括对贝叶斯先验的吸引力、由于有效编码而对先验的排斥以及对有限范围内的中心趋势的影响。我们提出了一个从第一性原理出发的、统一的贝叶斯感知估计偏差理论。我们从理论上证明了感知偏差可以分解为对先验的吸引力、对高编码精度区域的排斥以及对边界的回归。结果揭示了一个简单而通用的规则,用于预测感知偏差的方向。我们的理论解释了各种刺激属性感知偏差的新见解,并得出了这些见解,包括方向、颜色和大小。这些结果为贝叶斯计算的神经实现提供了重要的约束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验