Suppr超能文献

来自产酸克雷伯菌的一种新型双结构域GH78家族α-鼠李糖苷酶与鼠李糖结合的晶体结构。

Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound.

作者信息

O'Neill Ellis C, Stevenson Clare E M, Paterson Michael J, Rejzek Martin, Chauvin Anne-Laure, Lawson David M, Field Robert A

机构信息

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Nr4 7UH, United Kingdom.

Laboratorio Nacional De Genómica Para La Biodiversidad (Langebio), CINVESTAV-IPN, Irapuato, Cp36821, México.

出版信息

Proteins. 2015 Sep;83(9):1742-9. doi: 10.1002/prot.24807. Epub 2015 Aug 6.

Abstract

The crystal structure of the GH78 family α-rhamnosidase from Klebsiella oxytoca (KoRha) has been determined at 2.7 Å resolution with rhamnose bound in the active site of the catalytic domain. Curiously, the putative catalytic acid, Asp 222, is preceded by an unusual non-proline cis-peptide bond which helps to project the carboxyl group into the active centre. This KoRha homodimeric structure is significantly smaller than those of the other previously determined GH78 structures. Nevertheless, the enzyme displays α-rhamnosidase activity when assayed in vitro, suggesting that the additional structural domains found in the related enzymes are dispensible for function.

摘要

已确定产酸克雷伯菌(KoRha)的GH78家族α-鼠李糖苷酶的晶体结构,分辨率为2.7 Å,鼠李糖结合在催化结构域的活性位点。奇怪的是,假定的催化酸Asp 222之前有一个不寻常的非脯氨酸顺式肽键,有助于将羧基伸向活性中心。这种KoRha同二聚体结构明显小于其他先前确定的GH78结构。然而,该酶在体外测定时显示出α-鼠李糖苷酶活性,这表明相关酶中发现的额外结构域对功能来说是可有可无的。

相似文献

1
3
Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1.
J Mol Biol. 2007 Nov 23;374(2):384-98. doi: 10.1016/j.jmb.2007.09.003. Epub 2007 Sep 8.
4
Crystallization and preliminary crystallographic analysis of the family GH78 alpha-L-rhamnosidase RhaB from Bacillus sp. GL1.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Jul 1;62(Pt 7):646-8. doi: 10.1107/S174430910601904X. Epub 2006 Jun 10.
5
Crystal structure of native α-L-rhamnosidase from Aspergillus terreus.
Acta Crystallogr D Struct Biol. 2018 Nov 1;74(Pt 11):1078-1084. doi: 10.1107/S2059798318013049. Epub 2018 Oct 29.
6
Characterization of an α-L-Rhamnosidase from Streptomyces avermitilis.
Biosci Biotechnol Biochem. 2013;77(1):213-6. doi: 10.1271/bbb.120735. Epub 2013 Jan 7.
7
βγ-Crystallination Endows a Novel Bacterial Glycoside Hydrolase 64 with Ca-Dependent Activity Modulation.
J Bacteriol. 2019 Nov 5;201(23). doi: 10.1128/JB.00392-19. Print 2019 Dec 1.
8
Biochemical characterization of Aspergillus oryzae recombinant α-l-rhamnosidase expressed in Pichia pastoris.
J Biosci Bioeng. 2017 Dec;124(6):630-634. doi: 10.1016/j.jbiosc.2017.07.007. Epub 2017 Aug 9.
9
The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains.
Acta Crystallogr F Struct Biol Commun. 2016 Oct 1;72(Pt 10):750-761. doi: 10.1107/S2053230X16014072. Epub 2016 Sep 22.
10
The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.
J Biol Chem. 2017 Jul 21;292(29):12126-12138. doi: 10.1074/jbc.M117.777391. Epub 2017 May 25.

引用本文的文献

3
Insight into the phylogeny and metabolic divergence of species (, , and ) at the genome level.
Front Microbiol. 2023 May 25;14:1199144. doi: 10.3389/fmicb.2023.1199144. eCollection 2023.
4
α-L-rhamnosidase: production, properties, and applications.
World J Microbiol Biotechnol. 2023 May 10;39(7):191. doi: 10.1007/s11274-023-03638-9.
8
Catalytic Cycle of Glycoside Hydrolase BglX from and Its Implications for Biofilm Formation.
ACS Chem Biol. 2020 Jan 17;15(1):189-196. doi: 10.1021/acschembio.9b00754. Epub 2020 Jan 7.
10
Biochemical Characterization of the α-l-Rhamnosidase Rha from : Application to the Selective Derhamnosylation of Natural Flavonoids.
ACS Omega. 2019 Jan 24;4(1):1916-1922. doi: 10.1021/acsomega.8b03186. eCollection 2019 Jan 31.

本文引用的文献

1
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
2
Chemoenzymatic synthesis of α-L-rhamnosides using recombinant α-L-rhamnosidase from Aspergillus terreus.
Bioresour Technol. 2013 Nov;147:640-644. doi: 10.1016/j.biortech.2013.08.083. Epub 2013 Aug 23.
3
A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilate.
Bioorg Med Chem. 2013 Aug 15;21(16):4762-7. doi: 10.1016/j.bmc.2013.05.057. Epub 2013 Jun 5.
4
Decision making in xia2.
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1260-73. doi: 10.1107/S0907444913015308. Epub 2013 Jun 18.
6
An expedient enzymatic route to isomeric 2-, 3- and 6-monodeoxy-monofluoro-maltose derivatives.
Carbohydr Res. 2012 Sep 1;358:12-8. doi: 10.1016/j.carres.2012.05.026. Epub 2012 Jun 7.
8
Preparatory production of quercetin-3-β-D-glucopyranoside using alkali-tolerant thermostable α-L-rhamnosidase from Aspergillus terreus.
Bioresour Technol. 2012 Jul;115:222-7. doi: 10.1016/j.biortech.2011.08.029. Epub 2011 Aug 11.
9
Characterization of two distinct glycosyl hydrolase family 78 alpha-L-rhamnosidases from Pediococcus acidilactici.
Appl Environ Microbiol. 2011 Sep;77(18):6524-30. doi: 10.1128/AEM.05317-11. Epub 2011 Jul 22.
10
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验