Maire J J, Close L N, Heinricher M M, Selden N R
Department of Neurological Surgery, Oregon Health & Science University, Portland, USA.
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA.
Eur J Pain. 2016 Feb;20(2):206-14. doi: 10.1002/ejp.708. Epub 2015 Apr 5.
The amygdala has an important role in pain and pain modulation. We showed previously in animal studies that α2 -adrenoreceptor activation in the central nucleus of the amygdala (CeA) mediates hypoalgesia produced by restraint stress, and that direct application of an α2 -agonist in this region produces analgesia.
In the present animal experiments, we investigated the pathways through which α2 -sensitive systems in the CeA produce behavioural analgesia. The CeA has dense connections to a descending pain modulatory network, centred in the midbrain periaqueductal grey (PAG) and the rostral ventromedial medulla (RVM), which is implicated in various forms of stress-related hypoalgesia and which mediates the antinociceptive effect of morphine applied in the basolateral amygdala. We investigated whether this circuit mediates the hypoalgesic effects of α2 -adrenergic agonist administration into the CeA as well as the contribution of endogenous opioids and cannabinoids. We also tested the possibility that activation of α2 -receptors in the CeA produces antinociception by recruitment of noradrenergic pathways projecting to the spinal cord.
Hypoalgesia resulting from bilateral application of the α2 -adrenergic agonist clonidine in the CeA was not reversed by chemical inactivation of the RVM or by systemic injections of naloxone (μ-opioid antagonist) or rimonabant (CB1 antagonist). By contrast, spinal α2 -receptor blockade (intrathecal idazoxan) completely prevented the hypoalgesic effect of clonidine in the CeA, and unmasked a small but significant hyperalgesia.
In rats, adrenergic actions in the CeA mediating hypoalgesia require spinal adrenergic neurotransmission but not the PAG-RVM pain modulatory network, or opiate or cannabinoid systems.
杏仁核在疼痛及疼痛调节中起重要作用。我们之前在动物研究中表明,杏仁核中央核(CeA)中的α2 -肾上腺素能受体激活介导了束缚应激产生的痛觉减退,且在此区域直接应用α2 -激动剂可产生镇痛作用。
在当前的动物实验中,我们研究了CeA中α2 -敏感系统产生行为性镇痛的途径。CeA与一个下行性疼痛调节网络有密集连接,该网络以中脑导水管周围灰质(PAG)和延髓头端腹内侧部(RVM)为中心,参与各种形式的应激相关痛觉减退,并介导了在基底外侧杏仁核应用吗啡的抗伤害感受作用。我们研究了该回路是否介导了向CeA注射α2 -肾上腺素能激动剂的痛觉减退效应以及内源性阿片类物质和大麻素的作用。我们还测试了CeA中α2 -受体激活通过募集投射至脊髓的去甲肾上腺素能通路产生抗伤害感受的可能性。
双侧在CeA应用α2 -肾上腺素能激动剂可乐定产生的痛觉减退,不会因RVM的化学失活或全身注射纳洛酮(μ-阿片受体拮抗剂)或利莫那班(CB1拮抗剂)而逆转。相比之下,脊髓α2 -受体阻断(鞘内注射咪唑克生)完全阻止了可乐定在CeA的痛觉减退效应,并揭示出轻微但显著的痛觉过敏。
在大鼠中,CeA介导痛觉减退的肾上腺素能作用需要脊髓肾上腺素能神经传递,但不需要PAG-RVM疼痛调节网络、阿片或大麻素系统。