Suppr超能文献

对拂子介内部叠层锚状骨针结构的新功能见解。

New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum.

作者信息

Monn Michael A, Weaver James C, Zhang Tianyang, Aizenberg Joanna, Kesari Haneesh

机构信息

School of Engineering, Brown University, Providence, RI 02912; and.

Wyss Institute for Biologically Inspired Engineering and.

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4976-81. doi: 10.1073/pnas.1415502112. Epub 2015 Apr 6.

Abstract

To adapt to a wide range of physically demanding environmental conditions, biological systems have evolved a diverse variety of robust skeletal architectures. One such example, Euplectella aspergillum, is a sediment-dwelling marine sponge that is anchored into the sea floor by a flexible holdfast apparatus consisting of thousands of anchor spicules (long, hair-like glassy fibers). Each spicule is covered with recurved barbs and has an internal architecture consisting of a solid core of silica surrounded by an assembly of coaxial silica cylinders, each of which is separated by a thin organic layer. The thickness of each silica cylinder progressively decreases from the spicule's core to its periphery, which we hypothesize is an adaptation for redistributing internal stresses, thus increasing the overall strength of each spicule. To evaluate this hypothesis, we created a spicule structural mechanics model, in which we fixed the radii of the silica cylinders such that the force transmitted from the surface barbs to the remainder of the skeletal system was maximized. Compared with measurements of these parameters in the native sponge spicules, our modeling results correlate remarkably well, highlighting the beneficial nature of this elastically heterogeneous lamellar design strategy. The structural principles obtained from this study thus provide potential design insights for the fabrication of high-strength beams for load-bearing applications through the modification of their internal architecture, rather than their external geometry.

摘要

为了适应各种对身体要求苛刻的环境条件,生物系统进化出了多种多样坚固的骨骼结构。一个这样的例子是偕老同穴,它是一种生活在沉积物中的海洋海绵,通过由数千根锚状骨针(长的、毛发状的玻璃纤维)组成的灵活固着装置固定在海底。每根骨针都覆盖着倒刺,其内部结构由一个二氧化硅实心核心和围绕它的同轴二氧化硅圆柱体组件组成,每个圆柱体由一层薄的有机层隔开。每个二氧化硅圆柱体的厚度从骨针的核心到其外围逐渐减小,我们推测这是一种重新分布内部应力的适应方式,从而增加每根骨针的整体强度。为了评估这一假设,我们创建了一个骨针结构力学模型,在该模型中我们固定了二氧化硅圆柱体的半径,以使从表面倒刺传递到骨骼系统其余部分的力最大化。与天然海绵骨针中这些参数的测量结果相比,我们的建模结果相关性非常好,突出了这种弹性非均质层状设计策略的有益性质。因此,从这项研究中获得的结构原理为通过改变其内部结构而非外部几何形状来制造用于承重应用的高强度梁提供了潜在的设计思路。

相似文献

7
3D-printed bioinspired spicules: Strengthening and toughening via stereolithography.3D 打印仿生骨针:立体光固化强化增韧。
J Mech Behav Biomed Mater. 2024 Jul;155:106555. doi: 10.1016/j.jmbbm.2024.106555. Epub 2024 Apr 17.

引用本文的文献

5
Bio-Inspired Multiscale Design for Strong and Tough Biological Ionogels.生物启发的多尺度设计用于强韧的生物离聚物
Adv Sci (Weinh). 2023 May;10(13):e2207233. doi: 10.1002/advs.202207233. Epub 2023 Mar 11.
10
Stiffness-Independent Toughening of Beams through Coaxial Interfaces.通过同轴界面实现梁的与刚度无关的增韧
Adv Sci (Weinh). 2018 Oct 7;5(11):1800728. doi: 10.1002/advs.201800728. eCollection 2018 Nov.

本文引用的文献

1
3
The conflicts between strength and toughness.强度与韧性的矛盾。
Nat Mater. 2011 Oct 24;10(11):817-22. doi: 10.1038/nmat3115.
4
Nanotechnology approaches to improve dental implants.纳米技术在改善牙科植入物方面的应用。
Int J Oral Maxillofac Implants. 2011;26 Suppl(Suppl):25-44; discussion 45-9.
5
Structure and mechanical properties of selected biological materials.所选生物材料的结构与力学性能
J Mech Behav Biomed Mater. 2008 Jul;1(3):208-26. doi: 10.1016/j.jmbbm.2008.02.003. Epub 2008 Feb 19.
6
Tough, bio-inspired hybrid materials.坚韧的、受生物启发的混合材料。
Science. 2008 Dec 5;322(5907):1516-20. doi: 10.1126/science.1164865.
8
Cooperative deformation of mineral and collagen in bone at the nanoscale.纳米尺度下骨中矿物质与胶原蛋白的协同变形
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17741-6. doi: 10.1073/pnas.0604237103. Epub 2006 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验