Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China.
Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
Adv Sci (Weinh). 2023 May;10(13):e2207233. doi: 10.1002/advs.202207233. Epub 2023 Mar 11.
Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale-structured ionogel (M-gel) via ionothermal-stimulated silk fiber splitting and moderate molecularization in the cellulose-ions matrix is reported. The produced M-gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M-gel, the resultant biomimetic M-gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m , and instantaneous impact resistance of 3.07 kJ m , which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load-bearing materials requiring greater impact resistance.
结构设计为开发具有理想机械性能的先进软材料提供了有效的解决方案。然而,在离聚物中创建多尺度结构以获得优异的机械性能是具有挑战性的。本研究报道了一种通过离子热刺激丝纤维分裂和纤维素离子基体中适度的分子化原位集成策略来制备多尺度结构离聚物(M-凝胶)的方法。所制备的 M-凝胶表现出包含微纤维、纳米纤维和超分子网络的多尺度结构优势。当该策略用于构建具有六放海绵启发的 M-凝胶时,所得仿生 M-凝胶表现出优异的机械性能,包括弹性模量为 31.5 MPa、断裂强度为 6.52 MPa、韧性达到 1540 kJ m 和瞬时抗冲击性为 3.07 kJ m ,这些性能可与大多数先前报道的聚合物凝胶甚至硬木相媲美。该策略具有普适性,可以应用于其他生物聚合物,为具有更大抗冲击性要求的更具挑战性的承载材料的生物离聚物提供了一种有前景的原位设计方法。