Suppr超能文献

太阳风与天体物理等离子体中的间歇性、非线性动力学及耗散

Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.

作者信息

Matthaeus W H, Wan Minping, Servidio S, Greco A, Osman K T, Oughton S, Dmitruk P

机构信息

Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze, Italy

Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0154.

Abstract

An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.

摘要

本文概述了空间和时间间歇性的重要特性,包括其在流体、磁流体和等离子体中出现的证据,以及对理解日球层等离子体的意义。空间间歇性通常与尖锐梯度和相干结构的形成有关。结构生成的基本物理原理是理想的,但当存在耗散时,它通常集中在强梯度区域。流体中空间间歇性的这一基本特征最近已被证明可延伸到动力学等离子体领域,在该领域中,耗散函数并非从第一原理得知。间歇性等离子体中产生的空间结构会影响耗散、加热以及带电粒子的输运和加速。时间间歇性可导致非常长的时间相关性或对稳态条件的延迟趋近,并且与反向级联或准反向级联系统有关,这可能对日球层预测有影响。

相似文献

1
Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0154.
2
Dissipation and heating in solar wind turbulence: from the macro to the micro and back again.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0155.
3
Mediation of collisionless turbulent dissipation through cyclotron resonance.
Nat Astron. 2024;8(4):482-490. doi: 10.1038/s41550-023-02186-4. Epub 2024 Jan 23.
4
Detection of small-scale structures in the dissipation regime of solar-wind turbulence.
Phys Rev Lett. 2012 Nov 9;109(19):191101. doi: 10.1103/PhysRevLett.109.191101. Epub 2012 Nov 8.
5
Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.
Phys Rev Lett. 2015 Feb 13;114(6):065002. doi: 10.1103/PhysRevLett.114.065002. Epub 2015 Feb 9.
6
Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.
Phys Rev Lett. 2015 May 1;114(17):175002. doi: 10.1103/PhysRevLett.114.175002. Epub 2015 Apr 30.
7
A dynamical model of plasma turbulence in the solar wind.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0145.
8
Intermittency and local heating in the solar wind.
Phys Rev Lett. 2012 Jun 29;108(26):261102. doi: 10.1103/PhysRevLett.108.261102. Epub 2012 Jun 26.
9
Model for intermittency of energy dissipation in turbulent flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026306. doi: 10.1103/PhysRevE.74.026306. Epub 2006 Aug 25.
10
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.
Phys Rev E. 2017 Oct;96(4-1):042204. doi: 10.1103/PhysRevE.96.042204. Epub 2017 Oct 9.

引用本文的文献

1
Simulation Models for Exploring Magnetic Reconnection.
Space Sci Rev. 2025;221(6):81. doi: 10.1007/s11214-025-01210-5. Epub 2025 Sep 9.
2
Electron scale coherent structure as micro accelerator in the Earth's magnetosheath.
Nat Commun. 2024 Jan 30;15(1):886. doi: 10.1038/s41467-024-45040-5.
3
Electron heating in kinetic-Alfvén-wave turbulence.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2220927120. doi: 10.1073/pnas.2220927120. Epub 2023 May 30.
4
Magneto-immutable turbulence in weakly collisional plasmas.
J Plasma Phys. 2019 Feb;85(1). doi: 10.1017/s0022377819000114. Epub 2019 Feb 18.
6
Open-Source Software Analysis Tool to Investigate Space Plasma Turbulence and Nonlinear DYNamics (ODYN).
Earth Space Sci. 2020 Apr;7(4):e2019EA001004. doi: 10.1029/2019EA001004. Epub 2020 Apr 22.
7
Sources of solar energetic particles.
Philos Trans A Math Phys Eng Sci. 2019 Jul 1;377(2148):20180095. doi: 10.1098/rsta.2018.0095.
8
EGF as a New Therapeutic Target for Medulloblastoma Metastasis.
Cell Mol Bioeng. 2015 Dec;8(4):553-565. doi: 10.1007/s12195-015-0395-6. Epub 2015 Jun 4.
9
Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0147.
10
The role of turbulence in coronal heating and solar wind expansion.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0148.

本文引用的文献

1
Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0147.
2
Anisotropy in solar wind plasma turbulence.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0152.
3
Generation of magnetic holes in fully kinetic simulations of collisionless turbulence.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0151.
4
Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0150.
5
Dynamic properties of small-scale solar wind plasma fluctuations.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0146.
6
Turbulent reconnection and its implications.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0144.
7
A dynamical model of plasma turbulence in the solar wind.
Philos Trans A Math Phys Eng Sci. 2015 May 13;373(2041). doi: 10.1098/rsta.2014.0145.
8
Magnetic field reversals and long-time memory in conducting flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):043010. doi: 10.1103/PhysRevE.90.043010. Epub 2014 Oct 16.
9
Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection.
Phys Rev Lett. 2013 May 17;110(20):205002. doi: 10.1103/PhysRevLett.110.205002. Epub 2013 May 15.
10
Proton kinetic effects and turbulent energy cascade rate in the solar wind.
Phys Rev Lett. 2013 Nov 15;111(20):201101. doi: 10.1103/PhysRevLett.111.201101. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验