Suppr超能文献

乳腺癌亚型间肿瘤异质性:基于MRI的特征可预测基因组检测结果。

Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay.

作者信息

Sutton Elizabeth J, Oh Jung Hun, Dashevsky Brittany Z, Veeraraghavan Harini, Apte Aditya P, Thakur Sunitha B, Deasy Joseph O, Morris Elizabeth A

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2015 Nov;42(5):1398-406. doi: 10.1002/jmri.24890. Epub 2015 Apr 7.

Abstract

PURPOSE

To investigate the association between a validated, gene-expression-based, aggressiveness assay, Oncotype Dx RS, and morphological and texture-based image features extracted from magnetic resonance imaging (MRI).

MATERIALS AND METHODS

This retrospective study received Internal Review Board approval and need for informed consent was waived. Between 2006-2012, we identified breast cancer patients with: 1) ER+, PR+, and HER2- invasive ductal carcinoma (IDC); 2) preoperative breast MRI; and 3) Oncotype Dx RS test results. Extracted features included morphological, histogram, and gray-scale correlation matrix (GLCM)-based texture features computed from tumors contoured on pre- and three postcontrast MR images. Linear regression analysis was performed to investigate the association between Oncotype Dx RS and different clinical, pathologic, and imaging features. P < 0.05 was considered statistically significant.

RESULTS

Ninety-five patients with IDC were included with a median Oncotype Dx RS of 16 (range: 0-45). Using stepwise multiple linear regression modeling, two MR-derived image features, kurtosis in the first and third postcontrast images and histologic nuclear grade, were found to be significantly correlated with the Oncotype Dx RS with P = 0.0056, 0.0005, and 0.0105, respectively. The overall model resulted in statistically significant correlation with Oncotype Dx RS with an R-squared value of 0.23 (adjusted R-squared = 0.20; P = 0.0002) and a Spearman's rank correlation coefficient of 0.49 (P < 0.0001).

CONCLUSION

A model for IDC using imaging and pathology information correlates with Oncotype Dx RS scores, suggesting that image-based features could also predict the likelihood of recurrence and magnitude of chemotherapy benefit.

摘要

目的

研究一种经过验证的基于基因表达的侵袭性检测方法——Oncotype Dx复发评分(RS)与从磁共振成像(MRI)中提取的基于形态学和纹理的图像特征之间的关联。

材料与方法

本回顾性研究获得了机构审查委员会的批准,且无需获得知情同意。在2006年至2012年期间,我们确定了患有以下情况的乳腺癌患者:1)雌激素受体(ER)阳性、孕激素受体(PR)阳性且人表皮生长因子受体2(HER2)阴性的浸润性导管癌(IDC);2)术前乳腺MRI检查;3)Oncotype Dx RS检测结果。提取的特征包括从术前及三次增强后MR图像上勾勒出的肿瘤计算得出的形态学、直方图和基于灰度共生矩阵(GLCM)的纹理特征。进行线性回归分析以研究Oncotype Dx RS与不同临床、病理和影像特征之间的关联。P < 0.05被认为具有统计学意义。

结果

纳入了95例IDC患者,Oncotype Dx RS的中位数为16(范围:0 - 45)。使用逐步多元线性回归模型,发现两个源自MR的图像特征,即第一次和第三次增强后图像中的峰度以及组织学核分级,与Oncotype Dx RS显著相关,P值分别为0.0056、0.0005和0.0105。总体模型与Oncotype Dx RS具有统计学意义的相关性,决定系数(R平方)值为0.23(调整后R平方 = 0.20;P = 0.0002),Spearman等级相关系数为0.49(P < 0.0001)。

结论

使用影像和病理信息建立的IDC模型与Oncotype Dx RS评分相关,这表明基于图像的特征也可预测复发可能性和化疗获益程度。

相似文献

1
Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay.
J Magn Reson Imaging. 2015 Nov;42(5):1398-406. doi: 10.1002/jmri.24890. Epub 2015 Apr 7.
6
Is there different correlation with prognostic factors between "non-mass" and "mass" type invasive ductal breast cancers?
Eur J Radiol. 2013 Sep;82(9):1404-9. doi: 10.1016/j.ejrad.2013.03.006. Epub 2013 Mar 27.
8
Breast cancer molecular subtype classifier that incorporates MRI features.
J Magn Reson Imaging. 2016 Jul;44(1):122-9. doi: 10.1002/jmri.25119. Epub 2016 Jan 12.
9
Utility of Oncotype DX Risk Assessment in Patients With Invasive Lobular Carcinoma.
Clin Breast Cancer. 2016 Feb;16(1):45-50. doi: 10.1016/j.clbc.2015.08.001. Epub 2015 Aug 19.

引用本文的文献

2
From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients.
Adv Sci (Weinh). 2025 Jan;12(2):e2408069. doi: 10.1002/advs.202408069. Epub 2024 Nov 13.
5
Wasserstein HOG: Local Directionality Extraction via Optimal Transport.
IEEE Trans Med Imaging. 2024 Mar;43(3):916-927. doi: 10.1109/TMI.2023.3325295. Epub 2024 Mar 5.
6
Multimodal data fusion for cancer biomarker discovery with deep learning.
Nat Mach Intell. 2023 Apr;5(4):351-362. doi: 10.1038/s42256-023-00633-5. Epub 2023 Apr 6.
8
Radiogenomics: a key component of precision cancer medicine.
Br J Cancer. 2023 Sep;129(5):741-753. doi: 10.1038/s41416-023-02317-8. Epub 2023 Jul 6.
9
A Two-Step Feature Selection Radiomic Approach to Predict Molecular Outcomes in Breast Cancer.
Sensors (Basel). 2023 Jan 31;23(3):1552. doi: 10.3390/s23031552.
10

本文引用的文献

1
Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging.
Radiology. 2014 Nov;273(2):365-72. doi: 10.1148/radiol.14132641. Epub 2014 Jul 15.
4
Computer-aided diagnosis of mass-like lesion in breast MRI: differential analysis of the 3-D morphology between benign and malignant tumors.
Comput Methods Programs Biomed. 2013 Dec;112(3):508-17. doi: 10.1016/j.cmpb.2013.08.016. Epub 2013 Sep 7.
5
3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imaging.
IEEE Trans Image Process. 2013 Nov;22(11):4422-35. doi: 10.1109/TIP.2013.2273669.
6
Correlation between imaging and molecular classification of breast cancers.
Diagn Interv Imaging. 2013 Nov;94(11):1069-80. doi: 10.1016/j.diii.2013.04.010. Epub 2013 Jul 15.
8
Texture analysis in assessment and prediction of chemotherapy response in breast cancer.
J Magn Reson Imaging. 2013 Jul;38(1):89-101. doi: 10.1002/jmri.23971. Epub 2012 Dec 13.
9
Comprehensive molecular portraits of human breast tumours.
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.
10
Molecular classification of estrogen receptor-positive/luminal breast cancers.
Adv Anat Pathol. 2012 Jan;19(1):39-53. doi: 10.1097/PAP.0b013e31823fafa0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验